serene – 1, part 2

t tooks just a few hours to learn the new software and construct the basic 3D objects: hull & deck. The time – consuming tasks are adjusting the shapes and playing around with hydrostatics. Some basic measures: LOA / LWL (length overall / waterline): 5.50 / 4.44 m, BOA / BWL (beam overall / waterline): 0.483 / 0.451 m, Draft: 0.1 m, S (wetted surface area): 1.66 m2, Cp (prismatic coefficient): 0.5619, LCB (longitudinal center of buoyancy): 0.5150, LCF (longitudinal center of floatation): 0.5192.

Additional hydrostatics parameters, VCB (vertical center of buoyancy): 0.0590 m, Cb (block coefficient): 0.4684, Cm (midship coefficient): 0.8336, Cw (water plane coefficient): 0.6385, Displacement: 0.096 tonne… Well, I wouldn’t pretend that I fully understand those parameters above, cause they contain insights into a boat that can only be correctly interpreted by an experienced designer. However, I’m tweaking around to optimize the parameters toward a higher Cp, higher LWL, and lower S.

Drag (resistance) predicted by the KAPER algorithm looks fine till now, however, the displacement is sacrificed already, 96 kg, barely enough for me (65 kg) plus 30 kg of gears. This gonna be a demanding boat with low primary stability, not recommended for beginner. It takes some real world experiences to understand why low initial stability is indeed a good thing, and why a kayak which appears to be very stable on flat water could probably throw you up side down in bumpy conditions.

Serene – 1 p1
Serene – 1 p2
Serene – 1 p3
Serene – 1 p4

Some rough calculations on the energy required to propel a kayak. My target speed is 7 kmph, or 3.8 knots. From the numbers recorded by my Garmin over the years, in normal big rivers and sea conditions, speed is reduced by 1/3 compared to the ideal condition of flat water.

That is you have to struggle at 5 knots to assure that 3.8 knots. The Kaper algorithm tells you that, this Serene – 1 hull produces a resistance force of 27.35 Newton at 5 knots (or 2.57 meters per second). Making the multiply: 2.57 x 27.35, that’s the output required: 70.39 Watt!

serene – 1, part 1

n the progress of learning to design my new kayak… you know its name already. I’m using Free!Ship, a CAD software running on Win XP virtual machine (with VirtualBox) on my Macbook. I haven’t used any CAD software before, haven’t designed anything 3D, not to say about a watercraft. So why designing a kayak!? Well, first, just for the fun of doing something yourself from A to Z. Second, though I’m no naval designer in any sense, I believe I have some guts on how a good kayak should be!

Many kayaks are designed for 70 ~ 90 kg paddlers on average, I’m not that bold, and I need something slimmer, lighter, with the drawback of sacrificing some load capacity of course. I’m re – modeling my kayak after Björn Thomasson’s Black Pearl, using just some publicly – available pictures of the boat. And it’s not a copy, there’re some modifications: slightly narrower beam, slightly less rocker, and slightly deeper V – bottom. And I would stick still to my familiar stitch & glue construction method.

Why stitch & glue!? Strip build generally offers best boat shapes, but look at the Inuit people’s SOF (skin on frame) kayaks, those “hard chines” suit naturally to S&G, the method is simpler and takes less time (which I don’t really have much for now). It gonna be not an easy process: just for the hull, adjust the 60 control points back and forth, recalculate the stability and performance parameters, repeat again and again until you’re satisfied with the results. I hope I can finish the design in about a month or so.

Serene – 1 p1
Serene – 1 p2
Serene – 1 p3
Serene – 1 p4

Recently, I’d noticed that Japanese kayakers usually use kinds of slim, long kayak similar to the Black Pearl, that’s quite understandable cause the body – building of Japanese is Vietnamese alike, we’re not too bold. Use a slimmer, lighter boat, and pack your gears cleverly for longer trip!

It’s interesting to know that, in the old day, in building kayaks, the Inuit people has “recipes” to measure the size of the boat: length should be 3 times the height of the paddler, width should be the hip plus somewhere from 4 to 8 “finger”. Well, like shoes, boat is tailored to match the user.