(SRAPHICS GENS

EDITED BY PAUL S. HECKBERT

IEM DI5K
ENCLOSED

RAPHICS GEMS
IV

Edited by Paul S. Heckbert

Computer Science Department
Carnegie Mellon University
Pittsburgh, Pennsylvania

M <

Morgan Kaufmann is an imprint of Academic Press

A Harcourt Science and Technology Company

San Diego San Francisco New York Boston
London Sydney Tokyo

ACADEMIC PRESS

A Harcourt Science and Technology Company
525 B Street, Suite 1900, San Diego, CA 92101-4495 USA
http://www.academicpress.com

Academic Press
24-28 Oval Road, London NW1 7DX United Kingdom
http://www.hbuk/ap/

Morgan Kaufmann
340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205
http://mkp.com

This book is printed on acid-free paper.

Copyright © 1994 by Academic Press, Inc.
All rights reserved.

No part of this publication may be reproduced or
transmitted in any form or by any means, electronic

— -~
or mechanical, including photocopy, recording, or 2 72 % A Z. b C g -
. : : h o ~ -

any information storage and retrieval system, without

permission in writing from the publisher. | m———

All brand names and product names mentioned in this book H ’;- 3—~§ tj i

are trademarks or registered trademarks of their respective companies. u i l

omn

V000 K 39/

Library of Congress Cataloging-in-Publication Data
Graphics Gems IV / edited by Paul S. Heckbert.
. cm. --(The Graphics Gems Series)

Includes bibliographicsl references and index.

ISBN 0-12-336156-7 (with Macintosh disk). —ISBN 0-12-336155-9
(with IBM disk).

1. Computer graphics. L Heckbert, Paul S., 1958-
1. Title: Graphics Gems 4. TIL. Title: Graphics Gems four.
1V, Series.
T385.G6974 1994
006.6’6--dc20

Printed in the United States of America
99 00 01 02 03 MB 987 654

93-46995

<> Contents

AUNOr INdEX . ..o iX
Foreword by Andrew GIasSner.t Xi
Preface . .. Xv
Aboutthe Cover XVii
. PolygonsandPolyhedra................l 1
I.1. Centroid of a Polygon by Gerard Bashein and Paul R. Detmer. 3
.2. Testing the Convexity of a Polygon by Peter Schorn and Frederick Fisher.... 7
1.3. AnIncremental Angle Point in Polygon Test by Kevin Weiler................ 16
1.4. Point in Polygon Strategies by Eric Hainesooien. 24
1.5. Incremental Delaunay Triangulation by Dani Lischinski 47
1.6. Building Vertex Normals from an Unstructured Polygon List by
ANArew GIassner. oot e 60
L7. Detecting Intersection of a Rectangular Solid and a Convex Polyhedron by
Ned Greene e e 74
1.8. Fast Collision Detection of Moving Convex Polyhedra by Rich Rabbitz. 83
I Geomerry 111
1. Distance to an Ellipsoid by John C. Hart 113
I.2. Fast Linear Approximations of Euclidean Distance in Higher Dimensions
by Yoshikazu Ohashi 120
I.3. Direct Outcode Calculation for Faster Clip Testing by Walt Donovan and
TimVan HOOK.o e e 125
I.4. Computing the Area of a Spherical Polygon by Robert D. Miller. 132
IL5. The Pleasures of “Perp Dot” Products by F S. Hill, Jr. 138
I1.6. Geometry for N-Dimensional Graphics by Andrew J. Hanson 149
. Transformations.......... 173
lll.1. Arcball Rotation Control by Ken Shoemake. 175
ll.2. Efficient Eigenvalues for Visualization by Robert L. Cromwell............... 193

\'

Vi

VL.

$ Contents
3. Fast Inversion of Length- and Angle-Preserving Matrices by KevinWu 199
H.4. Polar Matrix Decomposition by Ken Shoemakeoooovees 207
lI.5. Euler Angle Conversion by Ken Shoemake.cooceeeneezeees 222
I.6. Fiber Bundle Twist Reduction by Ken Shoemake.oo-on. 230
Curves and SUMACESo 239
IV.1. Smoothing and Interpolation with Finite Differences by Paul H. C. Eilers.. 241
IV.2. Knot Insertion Using Forward Differences by Phillip Barry and

BON GOIIMAN o oot 251
IV.3. Converting a Rational Curve to a Standard Rational Bernstein-Bézier

Representation by Chandrajit Bajaj and Guoliang Xu..................... 256
IV.4. Intersecting Parametric Cubic Curves by Midpoint Subdivision by

B, VIctor KIASSOM. . . o o o e et 261
IV.5. Converting Rectangular Patches into Bézier Triangles by Dani Lischinski. . . .278
IV.6. Tessellation of NURB Surfaces by John W. Peterson 286
IV.7. Equations of Cylinders and Cones by Ching-Kuang Shene................. 321
IV.8. An Implicit Surface Polygonizer by Jules Bloomenthal 324
Ray TraCingooooon i 351
V.1. Computing the Intersection of a Line and a Cylinder by

Ching-Kuang SHENEooiiiimi e 353
V.2. Intersecting a Ray with a Cylinder by Joseph M. Cychosz and

Warren N. Waggenspack, Jr. 356
V.3. Voxel Traversal along a 3D Line by Daniel Cohenooovenne 366
V.4. Multi-Jittered Sampling by Kenneth Chiu, Peter Shirley, and

Changyaw WANGooeeteunnammmin e 370
V.5. A Minimal Ray Tracer by Paul S. Heckbertoooovivereenens 375
SNAGING . .. oot 383
VI.1. A Fast Alternative to Phong’s Specular Model by Christophe Schlick 385
VI.2. R.E versus N.H Specular Highlights by Frederick Fisher and Andrew Woo . . .388
VI.3. Fast Alternatives to Perlin’s Bias and Gain Functions by Christophe Schlick. .401
VI.4. Fence Shading by Uwe Behrensoooviviiinrnenenenes 404

Contents < Vi

VII. Frame Buffer Techniques i ... 411
VIL.1. XOR-Drawing with Guaranteed Contrast by Manfred Kopp and
Michael GEervaulZ e 413
VIL2. A Contrast-Based Scalefactor for Luminance Display by Greg Ward 415
VIL.3. High Dynamic Range Pixels by Christophe Schlick. 422
VIII. Image Processing e 431
VIIIl.1. Fast Embossing Effects on Raster Image Data by John Schlag............. 433
VIII.2. Bilinear Coons Patch Image Warping by Paul S. Heckbert 438
VIII.3. Fast Convolution with Packed Lookup Tables by George Wolberg
and Henry Massalin e 447
Viil.4. Efficient Binary Image Thinning Using Neighborhood Maps by
JOSEPh M. CYChOSZo e 465
VIIL.5. Contrast Limited Adaptive Histogram Equalization by Karel Zuiderveld 474
VIIL.6. Ideal Tiles for Shading and Halftoning by Alan W. Paeth 486
IX. GraphicDesign................ . 495
IX.1. Placing Text Labels on Maps and Diagrams by Jon Christensen, Joe Marks,
and Stuart Shieber oo 497
IX.2. Dynamic Layout Algorithm to Display General Graphs by
LdszI6 SZirmay-Kalos.o e 505
Xo Utilities. 519
X.1. Tri-linear Interpolation by Steve Hill i i 521
X.2. Faster Linear Interpolation by Steven Eker........... 526
X.3. C++ Vector and Matrix Algebra Routines by Jean-Frangois Doué. 534

X.4. C Header File and Vector Library by Andrew Glassner and Eric Haines 558

<> Author Index

Format: author, institution, chapter number: p. start page.
Author’s full address is listed on the first page of each chapter.

Chandrajit Bajaj, Purdue University, West Lafayette, IN, USA, IV.3: p. 256.

Phillip Barry, University of Minnesota, Minneapolis, MN, USA, IV.2: p. 251.

Gerard Bashein, University of Washington, Seattle, WA, USA, L.1: p. 3.

Uwe Behrens, Bremen, Germany, VI1.4: p. 404.

Jules Bloomenthal, George Mason University, Fairfax, VA, USA, IV.8: p. 324.

Kenneth Chiu, Indiana University, Bloomington, IN, USA, V.4: p. 370.

Jon Christensen, Harvard University, Cambridge, MA, USA, IX.1: p. 497.

Daniel Cohen, Ben Gurion University, Beer-Sheva, Israel, V.3: p. 366.

Robert L. Cromwell, Purdue University, West Lafayette, IN, USA, III.2: p. 193.

Joseph M. Cychosz, Purdue University, West Lafayette, IN, USA, V.2: p. 356,
VIIL4: p. 465.

Paul R. Detmer, University of Washington, Seattle, WA, USA, L.1: p. 3.

Walt Donovan, Sun Microsystems, Mountain View, CA, USA, IL.3: p. 125.

Jean-Frangois Doué, HEC, Paris, France, X.3: p. 534.

Paul H. C. Eilers, DCMR Milieudienst Rijnmond, Schiedam, The Netherlands,
IV.1: p. 241.

Steven Eker, City University, London, UK, X.2: p. 526.

Frederick Fisher, Kubota Pacific Computer, Inc., Santa Clara, CA, USA, 1.2: p. 7,
VI.2: p. 388.

Michael Gervautz, Technical University of Vienna, Vienna, Austria, VIL.1: p. 413.

Andrew Glassner, Xerox PARC, Palo Alto, CA, USA, 1L.6: p. 60, X.4: p. 558.

Ron Goldman, Rice University, Houston, TX, USA, IV.2: p. 251.

Ned Greene, Apple Computer, Cupertino, CA, USA, L.7: p. 74.

Eric Haines, 3D /Eye Inc., Ithaca, NY, USA, L.4: p. 24, X.4: p. 558.

Andrew J. Hanson, Indiana University, Bloomington, IN, USA, I1.6: p. 149.

John C. Hart, Washington State University, Pullman, WA, USA, IL.1: p. 113.

Paul S. Heckbert, Carnegie Mellon University, Pittsburgh, PA, USA, V.5: p. 375,
VIIL2: p. 438.

F S. Hill, Jr., University of Massachusetts, Amherst, MA, USA, IL.5: p. 138.

ix

X < Authorindex

Steve Hill, University of Kent, Canterbury, UK, X.1: p. 521.

R. Victor Klassen, Xerox Webster Research Center, Webster, NY, USA, IV.4: p. 261.

Manfred Kopp, Technical University of Vienna, Vienna, Austria, VIL1: p. 413.

Dani Lischinski, Cornell University, Ithaca, NY, USA, 1.5: p. 47, IV.5: p. 278.

Joe Marks, Digital Equipment Corporation, Cambridge, MA, USA, IX.1: p. 497.

Henry Massalin, Microunity Corporation, Sunnyvale, CA, USA, VIIL3: p. 447.

Robert D. Miller, E. Lansing, MI, USA IL.4: p. 132.

Yoshikazu Ohashi, Cognex, Needham, MA, USA, 11.2: p. 120.

Alan W. Paeth, Okanagan University College, Kelowna, British Columbia, Canada,
VIIL.6: p. 486.

John W. Peterson, Taligent, Inc., Cupertino, CA, USA, IV.6: p. 286.

Rich Rabbitz, Martin Marietta, Moorestown, NJ, USA, 1.8: p. 83.

John Schiag, Industrial Light and Magic, San Rafael, CA, USA, VIIL1: p. 433.

Christophe Schiick, Laboratoire Bordelais de Recherche en Informatique, Talence,
France, VI.1: p. 385, VL.3: p. 401, VIL3: p. 422.

Peter Schorn, ETH, Ziirich, Switzerland, 1.2: p. 7.

Ching-Kuang Shene, Northern Michigan University, Marquette, MI, USA,
IV.7: p. 321, V.1: p. 353.

Stuart Shieber, Harvard University, Cambridge, MA, USA, IX.1: p. 497.

Peter Shirley, Indiana University, Bloomington, IN, USA, V.4: p. 370.

Ken Shoemake, University of Pennsylvania, Philadelphia, PA, USA, IIL.1: p. 175,
IIL4: p. 207, IIL5: p. 222, TIL6: p. 230.

L4szl6 Szirmay-Kalos, Technical University of Budapest, Budapest, Hungary,
TX.2: p. 505.

Tim Van Hook, Silicon Graphics, Mountain View, CA, USA, 11.3: p. 125.

Warren N. Waggenspack, Jr., Louisiana State University, Baton Rouge, LA, USA,
V.2: p. 356.

Changyaw Wang, Indiana University, Bloomington, IN, USA, V.4: p. 370.

Greg Ward, Lawrence Berkeley Laboratory, Berkeley, CA, USA, VIL2: p. 415.

Kevin Weiler, Autodesk Inc., Sausalito, CA, USA, L.3: p. 16.

George Wolberg, City College of New York/CUNY, New York, NY, USA,
VIIL3: p. 447.

Andrew Woo, Alias Research, Inc., Toronto, Ontario, Canada, VI.2: p. 388.

Kevin Wu, SunSoft, Mountain View, CA, USA, IIL.3: p. 199.

Guoliang Xu, Purdue University, West Lafayette, IN, USA, IV.3: p. 256.

Karel Zuiderveld, Utrecht University, Utrecht, The Netherlands, VIIL5: p. 474.

<> Foreword

Andrew S. Glassnher

We make images to communicate. The ultimate measure of the quality of our images
is how well they communicate information and ideas from the creator’s mind to the
perceiver’s mind. The efficiency of this communication, and the quality of our image,
depends on both what we want to say and to whom we intend to say it.

I believe that computer-generated images are used today in two distinct ways, char-
acterized by whether the intended receiver of the work is a person or machine. Images
in these two categories have quite different reasons for creation, and need to satisfy
different criteria in order to be successful.

Consider first an image made for a machine. For example, an architect planning
a garden next to a house may wish to know how much light the garden will typically
receive per day during the summer months. To determine this illumination, the architect
might build a 3D model of the house and garden, and then use computer graphics to
simulate the illumination on the ground at different times of day in a variety of seasons.
The images generated by the rendering program would be a by-product, and perhaps
never even looked at; they were only generated in order to compute illumination. The
only criterion for judgment for such images is an appropriate measure of accuracy.

Nobody will pass judgment on the aesthetics of these pictures, since no person with
an aesthetic sense will ever see them. Accuracy does not require beauty. For example,
a simulation may not produce images that are individually correct, but instead average
to the correct answer. The light emitted by the sun may be modeled as small, discrete
chunks, causing irregular blobs of illumination on the garden. When these blobs are
averaged together over many hours and days, the estimates approach the correct value
for the received sunlight. No one of these pictures is accurate individually, and probably
none of them would be very attractive.

When we make images for people, we have a different set of demands. We almost
always require that our images be attractive in some way. In this context, attractive
does not necessarily mean beautiful, but it means that there must be an aesthetic
component influenced by composition, color, weight, and so on. Even when we intend
to act as analytic and dispassionate observers, humans have an innate sense of beauty
that cannot be denied. This is the source of all ornament in art, music, and literature:
we always desire something beyond the purely functional. Even the most utilitarian
objects, such as hammers and pencils, are designed to provide grace and beauty to
our eyes and offer comfort to our hands. When we weave together beauty and utility,
we create elegance. People are more interested in beautiful things than neutral things,
because they stimulate our senses and our feelings.

Xi

xii < Foreword

So even the most utilitarian image intended to communicate something to another
person must be designed with that person in mind: the picture must be composed so
that it is balanced in terms of form and space, the colors must harmonize, the shapes
must not jar. It is by occasionally violating these principles that we can make one part
of the image stand out with respect to the background; ignoring them produces images
that have no focus and no balance, and thus do not capture and hold our interest.
Their ability to communicate is reduced. Every successful creator of business charts,
wallpaper designs, and scientific visualizations knows these rules and works with them.

So images intended for people must be attractive. Only then can we further address
the idea of accuracy. What does it mean for an image intended for a person to be
“accurate”?

Sometimes “accuracy” is interpreted to mean that the energy of the visible light
calculated to form the image exactly matches the energy that would be measured if the
modeled scene (including light sources) really existed, and were photographed; this idea
is described in computer graphics by the term photorealism. This would certainly be
desirable, under some circumstances, if the image were intended for a machine’s analysis,
but the human perceptual apparatus responds differently than a flatbed scanner. People
are not very good at determining absolute levels of light, and we are easily fooled into
thinking that the brightest and least chromatic part of an image is “white.”

Again we return to the question of what we’re trying to communicate. If the point of
an image is that a garden is well-lit and that there is uniform illumination over its entire
surface, then we do not care about the radiometric accuracy of the image as much as
the fact that it conveys that information; the whole picture could be too bright or too
dark by some constant factor and this message will still be carried without distortion.
In the garden image, we expect a certain variation due to the variety of soil, rocks,
plants, and other geometry in the scene. Very few people could spot the error in a
good but imprecise approximation of such seemingly random fluctuation. In this type
of situation, if you can’t see the error, you don’t care about it. So not only can the
illumination be off by a constant factor, it can vary from the “true” value quite a bit
from point to point and we won’t notice, or if we do notice, we won't mind.

If we want to convey the sense of a scene viewed at night, then we need to take
into account the entire observer of a night scene. The human visual system adapts to
different light levels, which changes how it perceives different ranges of light. If we look
at a room lit by a single 25-watt light bulb, and then look at it again when we use
a 1000-watt bulb, the overall illumination has changed by a constant factor, but our
perception of the room changes in a non-linear way. The room lit by the 25-watt bulb
appears dark and shadowy, while the room lit by the 1000-watt bulb is stark and bright.
If we display both on a CRT using the same intensity range, even though the underlying
radiance values were computed with precision, both images will appear the same. Is this
either accurate or photorealistic?

Sometimes some parts of an image intended for a person must be accurate, depending

Foreword ¢ Xiii

on what that image is intended to communicate. If the picture shows a new object
intended for possible manufacture, the precise shape may be important, or the way
it reflects light may be critical. In these applications we are treating the person as a
machine; we are inviting the person to analyze one or more characteristics of the image
as a predictor of a real object or scene. When we are making an image of a smooth and
glossy object prior to manufacture in order to evaluate its appearance, the shading must
match that of the final object as accurately as possible. If we are only rendering the
shape in order to make sure it will fit into some packing material, the shading only needs
to give us information about the shape of the object; this shading may be arbitrarily
inaccurate as long as we still get the right perception of shape. A silver candlestick
might be rendered as though it were made of concrete, for example, if including the
highlights and caustics would interfere with judging its shape. In this case our definition
of “accuracy” involves our ability to judge the structure of shapes from their images,
and does not include the optical properties of the shape.

My point is that images made for machines should be judged by very different criteria
than images made for people. This can help us evaluate the applicability of different
types of images with different objective accuracies. Consider the picture generated for
an architect’s client, with the purpose of getting an early opinion from the client re-
garding whether there are enough trees in the yard. The accuracy of this image doesn’t
matter as long as it looks good and is roughly correct in terms of geometry and shading.
Too much precision in every part of the image may lead to too much distraction; be-
cause of its perceived realism and implied finality, the client may start thinking about
whether a small shed in the image is placed just right, when it hasn’t even been de-
cided that there will be a shed at all. Precision implies a statement; vagueness implies
a suggestion.

Consider the situation where someone is evaluating a new design for a crystal drinking
glass; the precision of the geometry and the rendering will matter a great deal, since
the reflections and sparkling colors are very important in this situation. But still, the
numerical accuracy of the energy simulation need not be right, as long as the relative
accuracy of the image is correct. Then there’s the image made as a simulation for
analysis by a machine. In this case the image must be accurate with respect to whatever
criteria will be measured and whatever choice of measurement is used.

Images are for communication, and the success of an image should be measured only
by how well it communicates. Sometimes too little objective accuracy can distort the
message; sometimes too much accuracy can detract from the message. The reason for
making a picture is to communicate something that must be said; the image should
support that message and not dominate it. The medium must be chosen to fit the
message.

To make effective images we need effective tools, and that is what this book is intended
to provide. Every profession has its rules of thumb and tricks of the trade; in computer
graphics, these bits of wisdom are described in words, equations, and programs. The

xiv < Foreword

Graphics Gems series is like a general store; it’s fun to drop in every once in a while
and browse, uncovering unusual items with which you were unfamiliar, and seeing new
applications for old ideas. When you're faced with a sticky problem, you may remember
seeing just the right tool on display. Happily, our stock is in limitless supply, and as

near as your bookshelf or library.

<> Preface

This book is a cookbook for computer graphics programmers, a kind of “Numerical
Recipes” for graphics. It contains practical techniques that can help you do 2D and 3D
modeling, animation, rendering, and image processing. The 52 articles, written by 54
authors worldwide, have been selected for their usefulness, novelty, and simplicity. Each
article, or “Gem,” presents a technique in words and formulas, and also, for most of
the articles, in C or C++ code as well. The code is available in electronic form on the
IBM or Macintosh floppy disk in the back pocket of the book, and is available on the
Internet via FTP (see address below). The floppy disk also contains all of the code from
the previous volumes: Graphics Gems I, II, and III. You are free to use and modify this
code in any way you like.

A few of the Gems in this book deserve special mention because they provide imple-
mentations of particularly useful, but non-trivial algorithms. Gems IV.6 and IV.8 give
very general, modular code to polygonize parametric and implicit surfaces, respectively.
With these two and a polygon renderer, you could probably display 95% of all com-
puter graphics models! Gem 1.5 finds 2D Voronoi diagrams or Delaunay triangulations.
These data structures are very widely used for mesh generation and other geometric
operations. In the area of interaction, Gem III.1 provides code for control of orientation
in 3D. This could be used in interactive 3D modelers. Finally, Gem 1.8 gives code to find
collisions of polyhedra, an important task in physically based modeling and animation.

This book, like the previous three volumes in the Graphics Gems series, lies some-
where between the media of textbook, journal, and computer bulletin board. Textbooks
explain algorithms very well, but if you are doing computer graphics programming, then
they may not provide what you need: an implementation. Similarly, technical jour-
nals seldom present implementations, and they are often much more theoretical than
a programmer cares for. The third alternative, computer bulletin boards such as the
USENET news group comp.graphics.algorithms, occasionally contains good code, but
because most bulletin boards are unmoderated and unedited, they are so flooded with
queries that it is tedious to find useful information. The Graphics Gems series is an
attempt at a middle ground, where programmers worldwide can contribute graphics
techniques that they have found useful, and the best of these get published. Most of the
articles are written by the inventors of the techniques, so you will learn their motiva-
tions and see their programming techniques firsthand. Also, the implementations have
been selected for their portability; they are not limited to UNIX, IBM, or Macintosh
systems. Most of them will compile and run, perhaps with minor modifications, on any
computer with a C or C++ compiler.

XV

xvi < Preface

Assembling this book has been a collaborative process involving many people. In the
Spring of 1993, a call for contributions was distributed worldwide via electronic mail
and word of mouth. Submissions arrived in the Summer of 1993. These were read by
me and many were also read by one or more of my outside reviewers: Eric Haines,
Andrew Glassner, Chandrajit Bajaj, Tom Duff, Ron Goldman, Tom Sederberg, David
Baraff, Jules Bloomenthal, Ken Shoemake, Mike Kass, Don Mitchell, and Greg Ward.
Of the 155 articles submitted, 52 were accepted for publication. These were revised
and, in most cases, formatted into IATgX by the authors. Coordinating the project
at Academic Press in Cambridge, Massachusetts, were Jenifer Niles and Brian Miller.
Book composition was done by Rena Wells at Rosenlaui Publishing Services in Houston,
Texas, and the cover image was made by Eben Ostby of Pixar, in Richmond, California.
T am very thankful to all of these people and to the others who worked on this book
for helping to make it a reality. Great thanks also to the Graphics Gems series editor,
Andrew Glassner, for inviting me to be editor for this volume, and to my wife, Bridget
Johnson-Heckbert, for her patience.

There are a few differences between this book and the previous volumes of the series.
Organizationally, the code and bibliographies are not collected at the back of the book,
but appear with the text of the corresponding article. These changes make each Gem
more self-contained. The book also differs in emphasis. Relative to the previous volumes,
I have probably stressed novelty more, and simplicity less, preferring an implementation
of a complex computer graphics algorithm over formulas from analytic geometry, for
example.

In addition to the Graphics Gems series, there are several other good sources for
practical computer graphics techniques. One of these is the column “Jim Blinn’s Cor-
ner” that appears in the journal IEEE Computer Graphics and Applications. Another is
the book A Programmer’s Geometry, by Adrian Bowyer and John Woodwark (Butter-
worth’s, London, 1983), which is full of analytic geometry formulas. A mix of analytic
geometry and basic computer graphics formulas is contained in the book Computer
Graphics Handbook: Geometry and Mathematics by Michael E. Mortensen (Industrial
Press, New York, 1990). Another excellent source is, of course, graphics textbooks.

Code in this book is available on the Internet by anonymous FTP from princeton.edu
(128.112.128.1) in the directory pub/Graphics/GraphicsGems/GemsIV. The code for
other Graphics Gems books is also available nearby. Bug reports should be submitted
as described in the README file there.

Paul Heckbert, March 1994

<> About the Cover

The cover: “Washday Miracle” by Eben Ostby. Copyright (©) 1994 Pixar.

When series editor Andrew Glassner called me to ask if I could help with a cover image
for Graphics Gems IV, there were four requirements: the image needed to tell a story; it
needed to have gems in it; it should be a computer-generated image; and it should look
good. To these parameters, I added one of my own: it should tell a story that is different
from the previous covers. Those stories were usually mystical or magical; accordingly, I
decided to take the mundane as my inspiration.

The image was created using a variety of tools, including Alias Studio; Menv, our own
internal animation system; and Photorealistic RenderMan. The appliances, table, and
basket were built in Alias. The gems were placed by a stochastic “gem-placer” running
under Menv. The house set was built in Menv. Surface descriptions were written in the
RenderMan shading language and include both procedural and painted textures.

For the number-conscious, this image was rendered at a resolution of 2048 by 2695
and contains the following:

16 lights

643 gems

30,529 lines or 2,389,896 bytes of model information
4 cycles: regular, delicate, Perma-Press, and Air Fluff

Galyn Susman did the lighting design. Andrew Glassner reviewed and critiqued, and
made the image far better as a result. Matt Martin made prepress proofs. Pixar (in
corpora Karen Robert Jackson and Ralph Guggenheim) permitted me time to do this.

Eben Ostby

Pixar

xvii

& | &
Polygons and Polyhedra

This part of the book contains five Gems on polygons and three on polyhedra. Polygons
and polyhedra are the most basic and popular geometric building blocks in computer
graphics.

1.1. Centroid of a Polygon, by Gerard Bashein and Paul R. Detmer.
Gives formulas and code to find the centroid (center of mass) of a polygon. This is
useful when simulating Newtonian dynamics. Page 3.

1.2. Testing the Convexity of a Polygon, by Peter Schorn and Frederick Fisher.

Gives an algorithm and code to determine if a polygon is convex, non-convex (concave
but not convex), or non-simple (self-intersecting). For many polygon operations, faster
algorithms can be used if the polygon is known to be convex. This is true when scan
converting a polygon and when determining if a point is inside a polygon, for instance.
Page 7.

1.3. An Incremental Angle Point in Polygon Test, by Kevin Weiler.

l.4. Point in Polygon Strategies, by Eric Haines.

Provide algorithms for testing if a point is inside a polygon, a task known as point
inclusion testing in computational geometry. Point-in-polygon testing is a basic task
when ray tracing polygonal models, so these methods are useful for 3D as well as
2D graphics. Weiler presents a single algorithm for testing if a point lies in a concave
polygon, while Haines surveys a number of algorithms for point inclusion testing in both
convex and concave polygons, with empirical speed tests and practical optimizations.
Pages 16 and 24.

2 ¢ Polygons and Polyhedra

1.5. Incremental Delaunay Triangulation, by Dani Lischinski.

Gives some code to solve a very important problem: finding Delaunay triangulations
and Voronoi diagrams in 2D. These two geometric constructions are useful for trian-
gular mesh generation and for nearest neighbor finding, respectively. Triangular mesh
generation comes up when doing interpolation of surfaces from scattered data points,
and in fnite element simulations of all kinds, such as radiosity. Voronoi diagrams are
used in many computational geometry algorithms. Page 47.

The final three Gems of this part of the book concern polyhedra: polygonal models that
are intrinsically three-dimensional.

1.6. Building Vertex Normals from an Unstructured Polygon List, by Andrew Glassner.
Solves a fairly common rendering problem: if one is given a set of polygons in raw form,
with no topological (adjacency) information, and asked to do smooth shading (Gouraud
or Phong shading) of them, one must infer topology and compute vertex normals.
Page 60.

1.7. Detecting Intersection of a Rectangular Solid and a Convex Polyhedron, by

Ned Greene.

Presents an optimized technique to test for intersection between a convex polyhedron
and a box. This is useful when comparing bounding boxes against a viewing frustum in
a rendering program, for instance. Page 74.

1.8. Fast Collision Detection of Moving Convex Polyhedra, by Rich Rabbitz.
A turn-key piece of software that solves a difficult but basic problem in physically based
animation and interactive modeling. Page 83.

g

Q1.1

Centroid of a Polygon

Gerard Bashein! Paul R. Detmer!
Department of Anesthesiology and Department of Surgery and
Center for Bioengineering, RN-10 Center for Bioengineering, RF-25
University of Washington University of Washington

Seattle, WA 98195 Seattle, WA 98195
gb@locke.hs.washington.edu pdetmer@u.washington.edu

This Gem gives a rapid and accurate method to calculate the area and the coordinates
of the center of mass of a simple polygon.

Determination of the center of mass of a polygonal object may be required in the
simulation of planar mechanical systems and in some types of graphical data analysis.
When the density of an object is uniform, the center of mass is called the centroid. The
naive way of calculating the centroid, taking the mean of the z and y coordinates of
the vertices, gives incorrect results except in a few simple situations, because it actually
finds the center of mass of a massless polygon with equal point masses at its vertices. As
an example of how the naive method would fail, consider a simple polygon composed
of many small line segments (and closely spaced vertices) along one side and only a
few vertices along the other sides. The means of the vertex coordinates would then be
skewed toward the side having many vertices.

Basic mechanics texts show that the coordinates (Z,7) of the centroid of a closed
planar region R are given by

Jpzdedy _ po

T =R 1 (1)
g=davieds_ i ©)

where A is the area of R, and p, and p, are the first moments of R along the z- and
y-coordinates, respectively.

In the case where R is a polygon given by the points (x;,v;), ¢ = 0, ..., n, with
To = T, and Yo = yn, (Roberts 1965) and later (Rokne 1991), (Goldman 1991}, and
others have shown a rapid method for calculating its area based upon Green’s theorem
in a plane.

1Supported by grants HL42270 and HL41464 from the National Institutes of Health, Bethesda, MD.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

3 Macintosh ISBN 0-12-336156-7

4 < Polygons and Polyhedra

1 n—1
Z a;, where a; = Tiyi+1 — Tit1¥i
i=0

A=
2

Janicki et al. have also shown that the first moments p; and p, of a polygon can also
be found by Green’s theorem (Janicki et al. 1981), which states that given continuous

functions M (z,y) and N(z,y) having continuous partial derivatives over a region R,
which is enclosed by a contour C,

L(de—kNdy)z//}{(%%—%—)dwdy (3)

To evaluate the numerator of (1), let M =0 and N = 2% Then the right side of (3)
equals p,, and the first moment can be calculated as

1
pe = 5/09626&/

Then, representing the line segments between each vertex parametrically and summing
the integrals over each line segment yields

1 n—1
Ho = & Z (Tig1 +) - aq
i=0
Similarly, to evaluate the numerator of (2), let M = —%yQ and N = 0, and evaluate

the left side of (3). The result becomes

n—1

1
by =75 > (g1 +ui) - ai
=0

The form of the equations given above is particularly suited for numerical compu-
tation, because it takes advantage of a common factor in the area and moments, and
because it eliminates one subtraction (and the consequent loss of accuracy) from each
term of the summation for the moments. The loss of numerical accuracy due to the
remaining subtraction can be reduced if, before calculating the centroid, the coordinate
system is translated to place its origin somewhere close to the polygon.

The techniques used above can be generalized to find volumes, centroids, and mo-
ments of inertia of polyhedra (Lien and Kajiya 1984).

The following C code will calculate the z- and y-coordinates of the centroid and the
area of any simple (non-sell-intersecting) convex or concave polygon. The algebraic
signs of both the area (output by the function) and first moments (internal variables
only) will be positive when the vertices are ordered in a counterclockwise direction in
the z—y plane, and negative otherwise. The coordinates of the centroid will have the

1.1 Centroid of a Polygon < 5

correct signs in either case. The method of computation is algebraically equivalent to
breaking the polygon into component triangles, finding their signed areas and centroids,
and combining the results. Non-simple polygons will have the contributions of their
overlapping regions to the area and moments summed algebraically according to the
direction (clockwise or counterclockwise) of each traversal of each region.

$ CCode ¢

/***

polyCentroid: Calculates the centroid (xCentroid, yCentroid) and area

of a polygon, given its vertices (x[0]}, yI[(0]) ... (x[n-1], y[n-1}). It
is assumed that the contour is closed, i.e., that the vertex following
(x(n-1], yI[n-1]) is (x[0], yI[0]). The algebraic sign of the area is

positive for counterclockwise ordering of vertices in x-y plane;
otherwise negative.

Returned values: 0 for normal execution; 1 if the polygon is
degenerate (number of vertices < 3); and 2 if area = 0 (and the
centroid is undefined).
**/
int polyCentroid{double x[], double y[], int n,
double *xCentroid, double *yCentroid, double *area)

{

register int i, j;

double ai, atmp = 0, xtmp = 0, ytmp = 0;

if (n < 3) return 1;

for (i = n-1, j = 0; j < n; 1 = 3, Jj++)
{
ai = x[i] * y([3] - x[3] * y[i];
atmp += ai;
xtmp += (x[j] + x[i]) * ai;

yemp += (y[j] + y[il) * ai;
}
*area = atmp / 2;
if (atmp != O)
{
*xCentroid = xtmp / (3 * atmp);
*yCentroid = ytmp / (3 * atmp);
return 0;
}
return 2;
}

J*x**xx and polyCentroid *****/

6 < Polygons and Polyhedra

¢ Bibliography ¢
(Goldman 1991) Ronald N. Goldman. Area of planar polygons and volume of poly-
hedra. In James Arvo, ed., Graphics Gems II, pages 170-171. Academic Press,
Boston, MA, 1991.

(Janicki et al. 1981) Joseph S. Janicki et al. Three-dimensional myocardial and ven-
tricular shape: A surface representation. Am. J. Physiol., 241:H1-H11, 1981.

(Lien and Kajiya 1984) S. Lien and J. T. Kajiya. A symbolic method for calculating the
integral properties of arbitrary nonconvex polyhedra. IEEE Computer Graphics

€ Applications, 4(10):35-41, 1984.

(Roberts 1965) L. G. Roberts. Machine perception of three-dimensional solids. In
J. P. Tippet et al., eds., Optical and Electro-Optical Information Processing. MIT
Press, Cambridge, MA, 1965.

(Rokne 1991) Jon Rokne. The area of a simple polygon. In James Arvo, ed., Graphics
Gems II, pages 5-6. Academic Press, Boston, MA, 1991.

Q1.2

Testing the Convexity of a
Polygon

Peter Schorn Frederick Fisher
Institut fir Theoretische Informatik 2630 Walsh Avenue
ETH, CH-8092 Ziirich, Switzerland Kubota Pacific Computer, Inc.
schorn@inf.ethz.ch Santa Clara, CA

fred @kpc.com

& Abstract <

This article presents an algorithm that determines whether a polygon given by the
sequence of its vertices is convex. The algorithm is implemented in C, runs in time
proportional to the number of vertices, needs constant storage space, and handles all
degenerate cases, including non-simple (self-intersecting) polygons.

Results of a polygon convexity test are useful to select between various algorithms that
perform a given operation on a polygon. For example, polygon classification could be
used to choose between point-in-polygon algorithms in a ray tracer, to choose an output
rasterization routine, or to select an algorithm for line-polygon clipping or polygon-
polygon clipping. Generally, an algorithm that can assume a specific polygon shape can
be optimized to run much faster than a general routine.

Another application would be to use this classification scheme as part of a filter
program that processes input data, such as from a tablet. Results of the filter could
eliminate complex polygons so that following routines may assume convex polygons.

¢ Issues in Solving the Problem ¢

The problem whose solution this article describes started out as a posting on the
USENET bulletin board ‘comp.graphics’ which asked for a program that could decide
whether a polygon is convex. Answering this question turned into a contest, managed
by Kenneth Sloan, which aimed at the construction of a correct and efficient program.
The most important issues discussed were:

¢ Correctness, especially in degenerate cases. Many people quickly succeeded in writ-
ing a program which could handle almost all cases. The challenge was a program
which works in all, even degenerate, cases. Some degenerate examples are depicted
in Figure 1.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

7 Macintosh ISBN 0-12-336156-7

8 ¢ Polygons and Polyhedra

. coinci ith p: <i<
p; coincides with p;,4 forl<i<4 py and py coincide

P p3 P P4

p3 lies on the edge from py to p

Pe pP7

P4
P Ps

Pg

Figure 1. Some degenerate cases.

p2

p1 p3
Figure 2. Non-convex polygon with a right turn at each vertex.

Although the first two examples might be considered convex (their interior is indeed
convex), a majority of the participants in the discussion agreed that these cases
should be considered not convex. Further complications are “al] points collinear”
and “repeated points.”

e What is a convex polygon? This question is very much related to correctness and a
suitable definition of a convex polygon was a hotly debated topic. When one thinks
about the problem for the first time, a common mistake is to require a right turn
at each vertex and nothing else. This leads to the counterexample in Figure 2.

e Efficiency. The program should run in time proportional to the number of vertices.
Furthermore, only constant space for the program was allowed. This required a
solution to read the polygon vertices from an input stream without saving them.

e Imprecise arithmetic. The meaning of “three points are collinear” becomes unclear
when the coordinates of the points are only approximately correct or when floating-
point arithmetic is used to test for collinearity or right turns. This article assumes
exact arithmetic in order to avoid complications.

& What Is a Convex Polygon? <

Answering this question is an essential step toward the construction of a robust program.
There are at least four approaches:

1.2 Testing the Convexity of a Polygon < 9

p3

p7

p6
Figure 3. An undisputed convex polygon.

The cavalier attitude: I know what a convex polygon is when I see one. For example
the polygon in Figure 3 is clearly convex.

The “what works for me” approach: A polygon P is convex if my triangulation
routine (renderer, etc.) which expects convex polygons as input can handle P.
The “algorithm as definition” approach: A polygon is convex if my convexity testing
program declares it as such.

A more abstract, mathematical approach starting with the definition of a convex
set: A set S of points is convex <

peS)AN(geS)=>VA:0<A<1: X-p+(1—-X):¢q€S

This roughly means that a set of points S is convex iff for any line drawn between
two points in the set S, then all points on the line segment are also in the set.

In the following we propose a different, formal approach, which has the following
advantages:

e It captures the intuition about a convex polygon.

e It gives a reasonable answer in degenerate cases.

o It distinguishes between clockwise- and counterclockwise orientations.

e It leads to a correct and efficient algorithm.

Classification: Given a sequence P = p1,p2,...,p, of points in the plane such that

1.
2.
3.

n is an integer and (n > 0).

Consecutive vertices are different. p; # p;y1 for 1 <4 < n (we assume pp4+1 = p1).
We restrict consideration to sequences where p; is lexicographically the smallest,
ie., p1 <p;for 2<i<mnwhere p<q& (pr < qz)V ((pz =ac) N (Py < qy))-

. All convex polygons are monotone polygons, that is the x-coordinate of the points

increases monotonically and then decreases monotonically. p; is the “rightmost
vertex.”
dj:1<j<n:pi<pigrforl<i<jandpi <pjforj<i<n

10 < Polygons and Polyhedra

Then if p; = [X;,Y;], and
d(i) = (Xiz1 — Xi) - (Yi = Yipr) — (Yiaa = Y3) - (X — Xi1)

P denotes a left- (counterclockwise) convex polygon <>
(Vi:1<i<n:di)<0)AEFi:1<i<n:d(i)<0)

P denotes a right- (clockwise) convex polygon <
(Vi:1<i<n:d@)>0)A(Fi:1<i<n:d@i)>0)

P denotes a degenerate-convex polygon <

Vi:1<i<n:di)=0

P denotes a non-convex polygon <

(F:1<i<n:di)<O)A(Fi:1<i<n:d(E) >0)

This classification of vertex-sequences agrees with our intuition for convex polygons
(see Figure 3). For clockwise convex polygons there is a right turn at each vertex, and
for counterclockwise convex polygons there is a left turn at each vertex. If the points
satisfy condition 4 but lie on a line, the polygon is classified as degenerate-convex.

For purposes of simplifying the classification, conditions 2, 3, and 4 constrain the
possible polygons. However, the classification can be extended to sequences not sat-
isfying conditions 2, 3, or 4. Any sequence can easily meet conditions 2 and 3 if we
remove consecutive duplicate points and perform a cyclic shift, moving the lexicograph-
ically smallest point to the beginning of the sequence. If condition 4 cannot be met, the
sequence denotes a non-convex polygon.

¢ ImplementationinC <

The following C program shows how the classification scheme can be turned into a
correct and efficient implementation. The program accepts lines which contain two
numbers, denoting the x- and y-coordinates of a point (see the function GetPoint).
Duplicate points are removed on the fly (see the function GetDifferentPoint).

Since we do not want to store more than a constant number of points, we cannot
perform a cyclic shift of the input vertices in order to assure condition 3. Instead, the
program counts how often the lexicographic order of the input vertices changes. If this
number exceeds two, the input polygon is definitely not convex.

In addition to the four cases distinguished in the classification scheme, the program
introduces a fifth case (NotConvexDegenerate) for polygons whose vertices all lie on a
line but do not satisfy condition 4.

1.2 Testing the Convexity of a Polygon {11

¢ Program to Classify a Polygon's Shape <
#include <stdio.h>

typedef enum { NotConvex, NotConvexDegenerate,
ConvexDegenerate, ConvexCCW, ConvexCW } PolygonClass;

typedef struct { double x, y; } Point2d;

int WhichSide(p, q, r) /* Given a directed line pg, determine */
Point2d P, 4, r; /* whether gr turns CW or CCW. */
{
double result;
result = (p.x - g.x) * (g.y - r.y) - (p.y - Q4.¥) * {g.x - r.x};
if (result < 0) return -1; /* g lies to the left (gr turns CW). */
if {result > 0) return 1; /* g lies to the right (gr turns CCW). */
return 0; /* g lies on the line from p to r. */
}
int Compare(p, Q) /* Lexicographic comparison of p and g */
Point2d P, 4
{
if (p.x < g.x) return -1; /* p 1is less than g. */
if (p.x » g.x) return 1; /* p 1is greater than g. */
if (p.y < g.y) return -1; /* p 1s less than g. */
if (p.y > g.y) return 1; /* p is greater than g. */
return 0; /* p 1s equal to g. */
}
int GetPoint(f, p) /* Read p's x- and y-coordinates from f */
FILE *f; /* and return true, iff successful. */
Point2d *p;
{
return !feof (f) && (2 == fscanf(f, "%$1f%1f", &(p->x), &(p->y)));

int GetDifferentPoint (f, previous, next)

FILE *f,; /* Read next point into 'mext' until it */
Point2d previous, *next; /* is different from 'previous' and */
{ /* return true iff successful. */
int eof;
while((eof = GetPoint (f, next)) && (Compare({previous, *next) == 0));

return eof;

/* CheckTriple tests three consecutive points for change of direction
* and for orientation.

*/
#define CheckTriple
if { (thisDir = Compare(second, third)) == -curDir)
++dirChanges;

curDir = thisDir;
if (thisSign = WhichSide(first, second, third)) {

P g

12 < Polygons and Polyhedra

if (angleSign == -thisSign)
return NotConvex;
angleSign = thisSign;

P g

}

first = second; second = third;

/* Classify the polygon vertices on file 'f' according to: 'NotConvex' */

/* ‘NotConvexDegenerate', 'ConvexDegenerate', 'ConvexCCW', 'ConvexCW'. */
PolygonClass ClassifyPolygon(f)
FILE *f,
{
int curDir, thisDir, thisSign, angleSign = 0, dirChanges = 0;
PolygonClass result;
Point2d first, second, third, saveFirst, saveSecond;
if (!GetPoint (f, &first) || !GetDifferentPoint(f, first, &second)
return ConvexDegenerate;
saveFirst = first; saveSecond = second;
curDir = Compare(first, second);
while(GetDifferentPoint (f, second, &third) } |
CheckTriple;

}
/* Must check that end of list continues back to start properly. */
if (Compare{second, saveFirst)) {
third = saveFirst; CheckTriple;
}
third = saveSecond; CheckTriple;

if (dirChanges > 2) return angleSign ? NotConvex : NotConvexDegenerate;
if (angleSign > 0) return ConvexCCW;
if (angleSign < 0) return ConvexCW;

return ConvexDegenerate;

int main()
{
switch (ClassifyPolygon(stdin)) {
case NotConvex: fprintf (stderr, "Not Convex\n");
exit (-1); break:;
case NotConvexDegenerate: fprlntf(stderr, "Not Convex Degenerate\n");
exit(-1); break;
case ConvexDegenerate: fprintf(stderr, "Convex Degenerate\n");
exit{ 0); break;
case ConvexCCW: fprintf(stderr, "Convex Counter-Clockwise\n") ;
exit (0); break;
case ConvexCW: fprintf(stderr, "Convex Clockwise\n");
exit(0); break;

1.2 Testing the Convexity of a Polygon ¢ 13

¢ Optimizations <

The previous code was chosen for its conciseness and readability. Other versions of the
code were written which accept a vertex count and pointer to an array of vertices. Given
this interface, it is possible to obtain good performance measurements by timing a large
number of calls to the polygon classification routine.

Variations of the code presented have resulted in a two to four times performance
increase, depending on the polygon shape. Optimizations for a particular machine or
programming language will undoubtedly produce different results. Some considerations
are:

o Convert each of the routines to macro definitions.

o Instead of keeping track of the first, second, and third points, keep track of the
previous delta (second — first), and a current delta (third — second). This will
speed up parts of the algorithm: The macro Compare needs only compare two
numbers with zero, instead of four numbers with each other; the routine for getting
a different point calculates the delta as it determines if the new point is different;
the cross product calculation uses the deltas directly instead of subtracting vertices
each time; the comparison for the WhichSide routine may be moved up to the
CheckTriple routine to save a comparison at the expense of a little more code;
and preparing to examine the next point requires three moves instead of four.

e Checking for less than three vertices is possible, but generally slows down the other
cases.

e Every time the variable dirChanges is incremented, it would be possible to check
if the number is now greater than two. This will slow down the convex cases, but
makes it possible to exit early for polygons which violate classification condition
4. If it is important to distinguish between NotConvex and NotConvexDegenerate,
this optimization may not be used.

¢ Reasonably Optimized Routine to Classify a Polygon's Shape ¢

/*
. code omitted which reads polygon, stores in an array, and calls
classifyPolygon2 ()
*/
typedef double Number; /* float or double */
#define ConvexCompare (delta) \

((deltal[0] > 0) ? -1 : /* x coord dAiff, second pt > first pt */\

14 < Polygons and Polyhedra

deltall] < 0) 2 1 /* x coord di

deltafl] > 0) 2 -1 : /* x coord same,
/* x coord same,

(
(
(deltafl] < 0) 2 1
0

ff, second pt < first pt */\

) /* second pt equals first point */

#define ConvexGetPointDelta({delta, pprev, pcu

/* Given a previous point 'pprev', read a new point into

/* and return delta in 'delta’.

pcur = pVert|iread++];
deltal[0] = pcur[0] - pprev[0];
deltall] = pcur[l] - pprev[ll:
#define ConvexCross(p, g} pl0] * g(l] - p[1]

#define ConvexCheckTriple

if ((thisDhir = ConvexCompare(dcur)) == -
++dirChanges;

r)

curDir) {

‘pcur' */

*/

/* The following line will optimize for polygons that are */

/* not convex because of classification condition 4,

*/

/* otherwise, this will only slow down the classification. */

/* if (dirChanges > 2) return Not
}
curDir = thisDir;
cross = ConvexCross (dprev, dcur);
if (cross > 0) { if (angleSign == -1)
angleSign = 1;
}
else if (cross < 0) { if (angleSign == 1)

angleSign = -1;

pSecond = pThird;
dprev([0] = dcurfO]; /* Remember ¢
dprev(l] = dcur([l];

classifyPolygon2 (nvert, pvVert)
int
Number pVert[]I[2];

/* Determine polygon type. return one of:

{

*

*

*/

nvert;

NotConvex, NotConvexDegenerate,
ConvexCCW, ConvexCW, ConvexDegenerate

int curDir, thisDir, dirChanges = 0,
angleSign = 0, iread, endOfData;

Number *pSecond, *pThird, *pSaveSecond,

/* if (nvert <= 0) return error;

/* Get different point, return if less than 3 diff points.

if (nvert < 3) return ConvexDegenerate;
iread = 1;

while (1) {

ConvexGetPointDelta(dprev, pVert[0],

Convex;

return NotConvex;

return NotConvex;

urrent delta.

/* Remember ptr to current point.

dprev(2], dcur(2],

if you care */

pSecond) ;

*/

*/

*/
*/

Cross;

second pt > first pt */\
second pt > first pt */\

P e s

P e S S S S A S e

1.2 Testing the Convexity of a Polygon & 15

if (dprevI[0] || dprev[l]) break;
/* Check if out of points. Check here to avoid slowing down cases
* without repeated points.
*/
if (iread >= nvert) return ConvexDegenerate;

pSaveSecond = pSecond;
curDir = ConvexCompare (dprev); /* Find initial direction */

while (iread < nvert) {
/* Get different point, break if no more points */
ConvexGetPointDelta (dcur, pSecond, pThird);
if (deur(0] == 0.0 && dcur([l] == 0.0) continue;

ConvexCheckTriple; /* Check current three points */
}

/* Must check for direction changes from last vertex back to first */
pThird = pVert [0]; /* Prepare for 'ConvexCheckTriple' */
decur (0] = pThird{0] - pSecond[0];
dcur[1l] = pThird({1l] - pSecond[l];
1f (ConvexCompare({dcur)) {

ConvexCheckTriple;
}

/* and check for direction changes back to second vertex */

dcur (0] = pSaveSecond[0] - pSecond[0];
dcur([1l] = pSaveSecond[l] - pSecond{1l];
ConvexCheckTriple; /* Don't care about 'pThird' now */

/* Decide on polygon type given accumulated status */
if (dirChanges > 2)
return angleSign ? NotConvex : NotConvexDegenerate;

if (angleSign > 0) return ConvexCCW;
if { angleSign < 0) return ConvexCW;
return ConvexDegenerate;

¢ Acknowledgments <

We are grateful to the participants of the electronic mail discussion: Gavin Bell, Wayne
Boucher, Laurence James Edwards, Eric A. Haines, Paul Heckbert, Steve Hollasch, Tor-
ben AHgidius Mogensen, Joseph O’Rourke, Kenneth Sloan, Tom Wright, and Benjamin
Zhu.

1.3

An Incremental Angle Point in
Polygon Test

Kevin Weiler

Autodesk Inc.

2320 Marinship Way
Sausalito, CA 94965
kjw @ autodesk.com

This algorithm can determine whether a given test point is inside of, or outside of,
a given polygon boundary composed of straight line segments. The algorithm is not
sensitive to whether the polygon is concave or convex or whether the polygon’s vertices
are presented in a clockwise or counterclockwise order. Extensions allow the algorithm
to handle polygons with holes and non-simple polygons. Only four bits of precision are
required for all of the incremental angle calculations.

¢ Introduction <

There are two commonly used algorithms for determining whether a given test point is
inside or outside of a polygon.

The first, the semi-infinite line technique, extends a semi-infinite line from the test
point outward, and counts the number of intersections of the edges of the polygon
boundary with the semi-infinite line. An odd number of intersections indicates the
point is inside the polygon, while an even number (including zero) indicates the point
is outside the polygon.

The second, the incremental angle technique, uses the angle of the vertices of the
polygon relative to the point being tested, where there is a total angle of 360 degrees
all the way around the point. For each vertex of the polygon, the difference angle (the
incremental angle) between the angle of that vertex of the polygon and the angle of the
next vertex of the polygon, as viewed from the test point, is added to a running sum.
If the final sum of the incremental angles is plus or minus 360 degrees, the polygon
surrounds the test point and the point is inside of the polygon. If the sum is O degrees,
the point is outside of the polygon.

What is less commonly known about the incremental angle technique is that only
four bits of precision are required for all of the incremental angle calculations, greatly
simplifying the necessary calculations. The angle value itself requires only two bits of
precision, lending itself to a quadrant technique where the quadrants are numbered

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

Macintosh ISBN 0-12-336156-7 16

1.3 An Incremental Angle Point in Polygon Test { 17

from 0 to 3. The incremental or delta angle requires an additional sign bit to indicate
clockwise or counterclockwise direction, for a total of three bits to represent the incre-
mental angle itself. The accumulated angle requires four bits total: three to represent
the magnitude, ranging from 0 to 4, plus a sign bit.

The following algorithm describes a four-bit precision incremental angle point in poly-
gon test. Extensions for polygons with holes and for degenerate polygons are also described.

The algorithm described was inspired by the incremental angle surrounder test some-
times used for the Warnock hidden surface removal algorithm. That surrounder algo-
rithm determines if a polygon surrounds rectangular screen areas by partitioning the
space around the rectangular window using an eight neighbor partitioning technique
(Newman and Sproull 1973, pp. 520-521, 526-527), (Rogers 1985, pp. 249-251). If one
shrinks the central rectangular window of that partitioning scheme down to a point
(shrinking the rectangular partitions directly above and below and to the left and right
of the window down to lines), the partitioning becomes a quadrant style division of the
space around the point. This reduces the precision of angle calculations needed and
simplifies the algorithm to the point in polygon test presented here.

Further discussion and comparisons of point in polygon techniques can be found in
Eric Haines’ article in this volume (Haines 1994).

¢ Preliminaries ¢

For sake of completeness, before describing the algorithm, simple type definitions used
in the following code as well as a typical definition for a polygon representation are
given below.

/* type for quadrant id's, incremental angles, accumulated angle values */
typedef short quadrant_type;

/* type for result value from point in polygon test */
typedef enum pt_poly_relation {INSIDE, OUTSIDE} pt_poly relation;

/* polygon vertex definition */
typedef struct vertex_struct {
double x,y; /* coordinate values */
struct vertex_struct *next; /* circular singly linked list from poly */
} vertex, *vertex_ptr;

/* polygon definition */
typedef struct polygon_struct {
vertex_ptr last; /* pointer to end of circular vertex list */

} polygon, *polygon_ptr;
/* polygon vertex access */
#define polygon_get_vertex(poly, vertex) \

{((vertex == NULL) ? poly->last-»next : vertex-»next)

The quadrant and return result types are self-explanatory.

18 <& Polygons and Polyhedra

Polygon vertices are regarded as structures that allow direct access of the X and Y
coordinate values in C via vertex—->x and vertex->y structure member dereferencing.

Polygons are treated here as objects that have a single access routine:
polygon_get_vertex(poly, vertex), where poly specifies a pointer to the polygon. If
vertex is NULL, the function will return a pointer to an arbitrary vertex of the polygon.
Otherwise, if vertex is a pointer to a given vertex of the polygon, the function will return
a pointer to the next vertex in the ordered circular list of vertices of the polygon. Given
the list representation of the polygons as described here, polygon vertices are regarded
as unique even if their coordinate values are not.

¢ The Algorithm <

The basic idea of the algorithm, as previously stated, is to accumulate the sum of the
incremental angles between the vertices of the polygon as viewed from the test point,
and then see if the angles add up to the logical equivalent of a full 360 degrees, meaning
the point is surrounded by the polygon.

The algorithm is presented here in four small pieces. First, a macro to determine
the quadrant angle of a polygon vertex is presented. Second, a macro to determine
x-intercepts of polygon edges is presented. Third, a macro to adjust the angle delta is
presented. Fourth, the main point in polygon test routine is presented.

First, the angle can be calculated using only two bits of precision with a simple
quadrant technique to determine the two-bit value of the angle, where x and y are the
coordinates of the test point (Figure 1).

/* determine the quadrant of a polygon point relative to the test point */
#define quadrant (vertex, X, y) \
((vertex->x > x) ? {((vertex->y > vy) 2?2 0 : 3) : ((vertex->y >y) 2 1 : 2))

This classifies the space around the test point into four quadrants. Since the test
used to determine the quadrant uses greater-than operations, the quadrant boundaries,
shown as solid lines in the diagram, lie just above and to the right of the axes centered
on the coordinates of the test point, as shown with dotted lines in the figure.

In some situations it is important to determine whether the polygon edge passes to
the right of or to the left of the test point. This can be determined from the x-intercept
value of the polygon edge where it intersects the infinite horizontal line passing through
the y value of the test point. The x-intercept can be calculated with:

/* determine x-intercept of a polygon edge
with a horizontal line at the y value of the test point */

#define x_intercept(ptl, pt2, vyy) \
(pt2->x - { (pt2->y - yy) * ((ptl-»>x - pt2->x) / (ptl->y - pt2->y)}))

It should be noted that this x-intercept code is not a general implementation as it
ignores division by zero, which occurs when the y coordinate difference is zero. The

1.3 An Incremental Angle Point in Polygon Test < 19

quadrant 1 quadrant 0
test point Q
quadrant 2 quadrant 3

L

X

Figure 1. Quadrants.

implementation is adequate for our purposes here, however, as it will never be called
under this condition.

The incremental angle itself is calculated simply by subtracting the quadrant value
(angle) of one polygon vertex from the quadrant value of the next vertex. There are
a few problems with this approach that must be fixed. First, because of the quadrant
numbering scheme, incremental angles that cross between quadrant 0 and quadrant 3
have values of 3 instead of the proper value of 1 and the signs are also reversed. This
can be fixed with a simple substitution of values. Second, an incremental angle that
passes from a given quadrant to the diagonal quadrant will have its sign reversed if it
passes to the right of the test point. This must be tested for by checking the x-intercept
of any delta which has a value of plus or minus 2. If it passes to the right of the test
point, its sign is reversed and thus must be adjusted. These adjustments are illustrated
in Figure 2 and the code below. Only one of the two sets of diagonals is shown in the
diagram.

#define adjust_delta(delta, vertex, next_vertex, XX, VYy)
switch (delta) {
/* make quadrant deltas wrap around */
case 3: delta = -1; break;
case -3: delta = 1; break;

/* check if went around polnt cw or ccw */
case 2: case -2: if (x_intercept (vertex, next_vertex, yy) > XX)
delta = - (delta);
break;

P G

20 < Polygons and Polyhedra

quadrant 1 quadrant 0

@ @ original delta
@ adjusted delta

A\
/)

@
!

)
o 7

X

AN
®

\‘c\@ @\\

Figure 2. Adjusting delta.

A side effect of the quadrant numbering scheme is that, when adjusted, the sign of
the delta value indicates whether the angle moves in a clockwise or counterclockwise
direction, depending on the orientation of the coordinate axis being used. The sign of
the final accumulated angle therefore also indicates the orientation of the polygon.

With these support macros and definitions out of the way, the point in polygon
algorithm itself becomes simple.

In its initialization section, the algorithm prepares for traversal of the polygon points
by finding the first vertex and calculating its angle from the test point, and zeroing the
running sum angle. Then the algorithm loops on all of the other points (vertices) in the
polygon. During the loop, the next vertex is found, its angle calculated, and the delta
angle is calculated. The delta is then adjusted as necessary and added to the running
sum. The loop then prepares for the next iteration. When all the points of the polygon
have been seen and the loop terminated, the value of the running sum is checked. If it
is equal to plus or minus 4, the angle covers a full 360 degrees and the point is inside
of the polygon boundary. Otherwise the angle value is 0 and the test point is outside of
the boundary of the polygon.

If the test point is actually on the polygon boundary itself, the result returned by the
algorithm could be inside or outside depending on whether the actual interior of the
polygon was to the right or left of the test point.

It is interesting to compare this incremental angle approach with the semi-infinite
line approach. When examined closely, operation by operation, the incremental angle
algorithm presented here is very similar to the semi-infinite line technique. In general,

1.3 An Incremental Angle Point in Polygon Test < 21

the incremental angle method takes a constant amount of time per vertex regardless of
axis crossings of the polygon edges (the exception is when the vertices of the polygon
edge are in diagonal quadrants, which takes the same amount of time for both ap-
proaches). The semi-infinite line technique performs more operations when its preferred
axis is crossed, and fewer operations when the other axis is crossed. To put it a dif-
ferent way, the semi-infinite line technique has both deeper and shallower code branch
alternatives than the incremental angle technique presented depending on whether its
preferred axis is crossed or not. Because of this variable behavior, worst case scenarios
can be constructed to make either algorithm perform better than the other.

Performance comparisons done by Haines (Haines 1994) give statistics that show the
incremental angle technique presented here to be slower than the semi-infinite line tech-
nique. Some of this performance difference will be reduced if the C compiler performs
case statement optimizations which utilize indexed jump tables.

/* determine if a test point is inside of or outside of a polygon */
/* polygon is "poly", test point is at "x","y" */
pt_poly_relation
point_in_poly (polygon_ptr poly, double x, double y)
{
vertex_ptr vertex, first_vertex, next_vertex;
quadrant_type quad, next_guad, delta, angle;

/* initialize */
vertex = NULL; /* because polygon_get_vertex is a macro */
vertex = first_vertex = polygon_get_vertex(poly,vertex);
quad = qguadrant (vertex, X, y);:
angle = 0;
/* loop on all vertices of polygon */
do {
next_vertex = polygon_get_vertex(poly,vertex);
/* calculate gquadrant and delta from last quadrant */
next_guad = quadrant (next_vertex, x, y);
delta = next_quad - quad;
adjust_delta(delta,vertex,next_vertex,x,y);
/* add delta to total angle sum */
angle = angle + delta;
/* increment for next step */
quad = next_quad;
vertex = next_vertex;
} while (vertex != first_vertex);

/* complete 360 degrees (angle of + 4 or -4) means inside */
if ((angle == +4) || (angle == -4)) return INSIDE; else return OUTSIDE;

22 < Polygons and Polyhedra

¢ Extension for Polygons with Holes <

In order to determine whether a test point is inside of or outside of a polygon which has
holes, the point in polygon test needs to be applied separately to each of the polygon’s
boundaries. It is preferable to start with the outermost boundary of the polygon, since
the polygon’s area is in most applications likely to be smaller than the total area in which
the test point might lie. If the test point is outside of this polygon boundary, then it is
outside of the entire polygon. If it is inside, then each hole boundary needs to be checked.
If the test point is inside any of the hole boundaries, then the test point is outside of the
entire polygon and checking can stop immediately. If the test point is outside of every
hole boundary (as well as being inside the outermost boundary), then the point is inside
of the polygon. Note that because the point in polygon test presented is insensitive to
whether the polygon boundaries are clockwise or counterclockwise, both the outermost
polygon boundary and the hole boundaries may be of any orientation. For polygons
with holes, however, the algorithm must be told which boundary is the outermost
boundary (some polygon representations encode this information in the orientation of
the boundaries).

& Extensions for Non-Simple Polygons <

Non-simple polygons (polygons which self-intersect, with boundaries which touch, cross,
or overlap themselves) are handled by the algorithm with minor modifications to the
final test of the accumulated angle. The final angle value test:

if (({angle == +4) || (angle == -4)) return INSIDE; else return OUTSIDE;

must be modified to handle non-simple polygons properly in all cases. Two different
rules are commonly used to determine the interior of non-simple polygons (there are
also others, but they are less common because their implementations are more difficult).
Both rules allow the non-simple polygon to completely surround the point an arbitrary
number of times.

With the first rule, the odd winding number rule, if the number of surroundings is
odd, then the point is inside. An even number indicates the point is outside the polygon.
The code for this is:

if (angle & 4) return INSIDE; else return OUTSIDE; /* odd number windings rule */

where an odd number of surroundings means that the 4-bit in the angle value will be
set since a valid angle value, unless it is 0, will be a multiple of 4.

The second rule, the non-zero winding number rule, accepts any number of surround-
ings to mean the point is in the interior of the polygon. With this rule, the final angle
value test becomes:

if (angle != 0) return INSIDE; else return OUTSIDE; /* non-zero winding rule */

1.3 An Incremental Angle Point in Polygon Test & 23

Of course, the accumulated angle value can no longer be contained within a four-bit
number under these conditions, but this characteristic is probably little more than a
curiosity anyway, except for its original effect of reducing angle calculations to simple
quadrant testing.

¢ Bibliography ¢

(Haines 1994) Eric Haines. Point in Polygon Strategies. In Paul Heckbert, editor,
Graphics Gems IV, 24-46. Academic Press, Boston, 1994.

(Newman and Sproull 1973) William Newman and Robert Sproull. Principles of In-
teractive Computer Graphics, 1st edition. McGraw-Hill, New York, 1973.

(Rogers 1985) David Rogers. Procedural Elements for Computer Graphics. McGraw-
Hill, New York, 1985.

Q1.4

Point in Polygon Strategies

Eric Haines

3D/Eye Inc.

1050 Craft Road
Ithaca, NY 14850
erich@eye.com

Testing whether a point is inside a polygon is a basic operation in computer graphics.
This Gem presents a variety of efficient algorithms. No single algorithm is the best in
all categories, so the capabilities of the better algorithms are compared and contrasted.
The variables examined are the different types of polygons, the amount of memory
used, and the preprocessing costs. Code is included in this article for several of the best
algorithms; the Gems IV distribution includes code for all the algorithms discussed.

¢ Introduction <

The motivation behind this Gem is to provide practical algorithms that are simple to
implement and are fast for typical polygons. In applied computer graphics we usually
want to check a point against a large number of triangles and quadrilaterals and occa-
sionally test complex polygons. When dealing with floating-point operations on these
polygons we do not care if a test point exactly on an edge is classified as being inside
or outside, since these cases are normally extremely rare.

In contrast, the field of computational geometry has a strong focus on the order of
complexity of an algorithm for all polygons, including pathological cases that are rarely
encountered in real applications. The order of complexity for an algorithm in compu-
tational geometry may be low, but there is usually a large constant of proportionality
or the algorithm itself is difficult to implement. Either of these conditions makes the
algorithm unfit for use. Nonetheless, some insights from computational geometry can be
applied to the testing of various sorts of polygons and can also shed light on connections
among seemingly different algorithms.

Readers that are only interested in the results should skip to the “Conclusions”
section.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

Macintosh ISBN 0-12-336156-7 24

1.4 Point in Polygon Strategies < 25

Figure 1. Jordan curve. Figure 2. Winding Figure 3. Bounding box.
number.

¢ Definitions <

In this Gem a polygon is defined by an ordered set of vertices which form edges making
a closed loop. The first and last vertices are connected by an edge, i.e., they are not
the same. More complex objects, such as polygons with holes for font lettering, can
be built from these polygons by applying the point in polygon test to each loop and
concatenating the results.

There are two main types of polygons we will consider in this Gem: general and
convex. If a number of points are to be tested against a polygon, it may be worthwhile
determining whether the polygon is convex at the start so you are able to use a faster
test. General polygons have no restrictions on the placement of vertices. Convex polygon
determination is discussed in another Gem in this volume (Schorn and Fisher 1994). If
you do not read this other Gem, at least note that a polygon with no concave angles is
not necessarily convex; a good counterexample is a star formed by five vertices.

One definition of whether a point is inside a region is the Jordan Curve Theorem,
also known as the parity or even-odd test. Essentially, it says that a point is inside a
polygon if, for any ray from this point, there is an odd number of crossings of the ray
with the polygon’s edges. This definition means that some areas enclosed by a polygon
are not considered inside (Figure 1).

If the entire area enclosed by the polygon is to be considered inside, then the winding
number is used for testing. This value is the number of times the polygon goes around
the point. In Figure 2 the darkly shaded areas have a winding number of two. Think
of the polygon as a loop of string pulled tight around a pencil point; the number of
loops around the point is the winding number. If a point is outside, the polygon does
not wind around it and so the winding number is zero. Winding numbers also have a
sign, which corresponds to the direction the edges wrap around the point. The winding

26 < Polygons and Polyhedra

number test can be converted to the parity test; an odd winding number is equivalent
to the parity test’s inside condition.

In ray tracing and other applications the original polygon is three-dimensional. To
simplify computation it is worthwhile to project the polygon and test point into two
dimensions. One way to do this is simply to ignore one coordinate. The best coordinate
to drop is the one that yields the largest area for the 2D polygon formed. This is easily
done by taking the absolute value of each coordinate of the polygon plane’s normal
and finding the largest; the corresponding coordinates are ignored (Glassner 1989).
Precomputing some or all of this information once for a polygon uses more memory but
increases the speed of the intersection test itself.

Point in polygon algorithms often benefit from having a bounding box around poly-
gons with many edges. The point is first tested against this box before the full polygon
test is performed; if the box is missed, so is the polygon (Figure 3). Most statistics
generated in this Gem assume this bounding box test was already passed successfully.

In ray tracing, (Worley and Haines 1993) points out that the polygon’s 3D bounding
box can be treated like a 2D bounding box by throwing away one coordinate, as done
above for polygons. By analysis of the operations involved, it can be shown to be more
profitable in general to first intersect the polygon’s plane and then test whether the
point is inside the 2D bounding box, rather than first testing the 3D bounding box and
then the plane. Other bounding box variants can be found in (Woo 1992).

¢ General Algorithms ¢

This section discusses the fastest algorithms for testing points against general polygons.
Three classes of algorithms are compared: those which use the vertex list as their only
data structure, those which do preprocessing and create an alternate form of the poly-
gon, and those which create additional efficiency structures. The advantages of a vertex
list algorithm is that no additional information or preprocessing is needed. However,
the other two types of algorithms offer faster testing times in many cases.

Crossings Test

The fastest algorithm without any preprocessing is the crossings test. The earliest pre-
sentation of this algorithm is (Shimrat 1962), though it has a bug in it, corrected by
(Hacker 1962). A ray is shot from the test point along an axis (+X is commonly used),
and the number of crossings is computed for the even-odd test (Figure 4). One way to
think about this algorithm is to consider the test point to be at the origin and to check
the edges against this point. If the Y coordinates of a polygon edge differ in sign, then
the edge can cross the test ray. In this case, if both X coordinates are positive, the edge

1.4 Point in Polygon Strategies < 27

Number of

Sum of angles Inside odd number

crossings is odd is 360 degrees of triangles

Figure 4. Crossings test. Figure 5. Angle Figure 6. Triangle fan.
summation.

and ray must intersect and a crossing is recorded. Else, if the X signs differ, then the X
intersection of the edge and the ray is computed and if positive a crossing is recorded.

What happens when the test ray intersects one or more vertices of the polygon? This
problem can be ignored by considering the test ray to be a half-plane divider, with
one of the half-planes including the ray’s points (Preparata and Shamos 1985, Glassner
1989). In other words, whenever the ray would intersect a vertex, the vertex is always
classified as being infinitesimally above the ray. In this way, no vertices are considered
intersected and the code is both simpler and speedier.

MacMartin pointed out that for polygons with a large number of edges there are
generally runs of edges that have Y coordinates with the same sign (Haines 1992). For
example, a polygon representing Brazil might have a thousand edges, but only a few of
these will straddle a given latitude line and there are long runs of contiguous edges on
one side of this line. So a faster strategy is to loop through just the Y coordinates as
fast as possible; when they differ then retrieve and check the X coordinates.

Either the even-odd or winding number test can be used to classify the point. The
even-odd test is done by simply counting the number of crossings. The winding number
test is computed by keeping track of whether the crossed edge passes from the Y- to
the Y+ half-plane (add 1) or vice versa (subtract 1). The final value is then the number
of counterclockwise windings about the point.

The slowest algorithm for testing points is by far the pure angle summation method.
It’s simple to describe: sum the signed angles formed at the point by each edge’s end-
points (Figure 5). The winding number can then be computed by finding the nearest
multiple of 360 degrees. The problem with this pure scheme is that it involves a large
number of costly math function calls.

However, the idea of angle summation can be used to formulate a fast algorithm
for testing points; see Weiler’s Gem in this volume (Weiler 1994). There is a strong

28 < Polygons and Polyhedra

connection between Weiler’s algorithm and the crossings test. Weiler avoids expensive
trigonometry computations by adding or subtracting one or more increments of 90
degrees as the loop vertices move from quadrant to quadrant (with the test point at the
origin). The crossings test is similar in that it can be thought of as counting movements
of 360 degrees when an edge crosses the test ray. The crossings test tends to be faster
because it does not have to categorize and record all quadrant-to-quadrant movements
but only those which cross the test ray. Weiler’s formulation is significant for the way
it adds to the understanding of underlying principles.

Triangle Fan Tests

In Graphics Gems, (Badouei 1990) presents a method of testing points against convex
polygons. The polygon is treated as a fan of triangles emanating from one vertex and
the point is tested against each triangle by computing its barycentric coordinates. As
(Berlin 1985) points out, this test can also be used for non-convex polygons by keeping
a count of the number of triangles that overlap the point; if odd, the point is inside
the polygon (Figure 6). Unlike the convex test, where an intersection means that the
test is done, all the triangles must be tested against the point for the non-convex test.
Also, for the non-convex test there may be multiple barycentric coordinates for a given
point, since triangles can overlap.

The barycentric test is faster than the crossings test for triangles but becomes quite
slow for polygons with more edges. However, {Spackman 1993) notes that pre-normaliz-
ing the barycentric equations and storing a set of precomputed values gives better per-
formance. This version of the algorithm is twice as fast as the crossings test for triangles
and is in general faster for polygons with few edges. The barycentric coordinates (which
are useful for interpolation and texture mapping) are also computed.

A faster triangle fan tester, proposed by (Green 1993), is to store a set of half-plane
equations for each triangle and test each in turn. If the point is outside any of the three
edges, it is outside the triangle. The half-plane test is an old idea, but storing the half-
planes instead of deriving them on the fly from the vertices gives this scheme its speed
at the cost of some additional storage space. For triangles this scheme is the fastest of
all of the algorithms discussed so far. It is also very simple to code and so lends itself
to assembly language translation. Theoretically the Spackman test should usually have
a smaller average number of operations per test, but in practice the optimized code for
the half-plane test is faster.

Both the half-plane and Spackman triangle testers can be sped up further by sorting
the order of the edge tests. Worley and Haines (Spackman 1993) note that the half-
plane triangle test is more efficient if the longer edges are tested first. Larger edges tend
to cut off more exterior area of the polygon’s bounding box and so can result in earlier

1.4 Point in Polygon Strategies < 29

exit from testing a given triangle. Sorting in this way makes the test up to 1.7 times
faster, rising quickly with the number of edges in the polygon. However, polygons with
a large number of edges tend to bog down the sorted edge triangle algorithm, with the
crossings test being faster above around 10 edges.

A problem occurs in general triangle fan algorithms when the code assumes that a
point that lies on a triangle edge is always inside that triangle. For example, a quadri-
lateral is treated as two triangles. If a point is exactly on the edge between the two
triangles it will be classified as being inside both triangles and so will be classified as
being outside the polygon (this problem does not happen with the convex test).

The code presented for these algorithms does not fully address this problem. In reality,
a random point tested against a polygon has an infinitesimal chance of landing exactly
on any edge. For rendering purposes this problem can be ignored, with the result being
one misshaded pixel once in a great while. A more robust solution (which will slow
down the test) is to note whether an edge is to include the points exactly on it or not.
Also, an option which has not been explored is to test shared interior edges only once
against the point and share the results between the adjacent triangles.

Grid Method

An even faster, and more memory intensive, method of testing for points inside a poly-
gon is lookup grids. The idea is to impose a grid inside the bounding box containing
the polygon. Each grid cell is categorized as being fully inside, fully outside, or indeter-
minate. The indeterminate cells also have a list of edges that overlap the cell, and also
one corner (or more) is determined to be inside or outside.

To test a point against this structure is extremely quick in most cases. For a reasonable
polygon many of the cells are either inside or outside, so testing consists of a simple
look-up. If the cell contains edges, then a line segment is formed from the test point to
the cell corner and is tested against all edges in the list (Antonio 1992). Since the state
of the corner is known, the state of the test point can be found from the number of
intersections (Figure 7). Salesin and Stolfi suggest an algorithm similar to this as part
of their ray tracing acceleration technique (Salesin and Stolfi 1989).

Care must be taken when a polygon edge exactly (or even nearly exactly) crosses a
grid corner, as this corner is then unclassifiable. Rather than coping with the topological
and numerical precision problems involved, one simple solution is to just start generating
the grid from scratch again, giving slightly different dimensions to the bounding box.
Also, when testing the line segment against the edges in a list, exact intersections of an
edge endpoint must be counted only once.

One additional enhancement partially solves this problem. Each grid cell has four
sides. If no polygon edges cross a side, then that side will be fully inside or outside the
polygon. A horizontal or vertical test line segment can then be generated from the test

30 < Polygons and Polyhedra

<Cell is outside, so is point
-

/

Y Find wedge,

test point

Draw line to corner and

. against edge
count crossings

Figure 7. Grid crossings Figure 8. Inclusion test. Figure 9. Random
test. polygon.

point to this cell side and the faster crossings test can be used against the edges in the
cell. In addition, this crossings test deals with endpoint intersection more robustly.

Note: the grid test code is in the Gems IV code distribution, but has been left out of
the book because of its length.

Pixel Based Testing

One interesting case that is related to gridding is that of pixel-limited picking. When
a dataset is displayed on the screen and a large amount of picking is to be done on
a still image, a specialized test is worthwhile. Hanrahan and Haeberli note that the
image can be generated once into a separate buffer, filling in each polygon’s area with
an identifying index (Hanrahan and Haeberli 1990). When a pixel is picked on this fixed
image; it is looked up in this buffer and the polygon selected is known immediately.

¢ Convex Polygons <

Convex polygons can be intersected faster due to their geometric properties. For exam-
ple, the crossings test can quit as soon as two Y-sign difference edges are found, since
this is the maximum that a convex polygon can have. Also, note that more polygons
can use this faster crossings test by checking only the change in the Y direction (and
not X and Y as for the full convexity test); see (Schorn and Fisher 1994). For example,
a block letter “E” has at most two Y intersections for any test point’s horizontal line
(and so is called monotone in Y), so it can use the faster crossings test.

1.4 Point in Polygon Strategies ¢ 31

The triangle fan tests can exit as soon as any triangle is found to contain the point.
These algorithms can be enhanced by both sorting the edges of each triangle by length
and also sorting the testing order of triangles by their areas. Relatively larger triangles
are more likely to enclose a point and so end testing earlier. Note that this faster test can
be applied to any polygon that is decomposed into non-overlapping triangles; convex
polygons always have this property when tessellated into a triangle fan.

The exterior algorithm prestores the half-plane for each polygon edge and tests the
point against this set. If the point is outside any edge, then the point must be outside the
entire convex polygon. This algorithm uses less additional storage than the triangle fan
and is very simple to code. The order of edges tested affects the speed of this algorithm;
testing edges in the order of which cuts off the most area of the bounding box earliest
on is the best ordering. Finding this optimal ordering is non-trivial, but doing the edges
in order is often the worst strategy, since each neighboring edge usually cuts off little
more area than the previous. Randomizing the order of the edges makes this algorithm
up to 10% faster overall for regular polygons.

The exterior algorithm looks for an early exit due to the point being outside the
polygon, while the triangle fan convex test looks for one due to the point being inside.
For example, for 100 edge polygons, if all points tested are inside the polygon the
triangle fan is 1.7 times faster; if all test points are outside the exterior test is more
than 16 times faster (but only 4 times faster if the edges are not randomized). So when
the polygon/bounding box area ratio is low the exterior algorithm is usually best; in
fact, performance is near constant time as this ratio decreases, since after only a few
edges most points are categorized as outside the polygon.

A hybrid of the exterior algorithm and the triangle fan is to test triangles and exit
early when the point is outside the polygon. A point is outside the polygon if it is
outside any exterior triangle edge. This strategy combines the early exit features of
both algorithms and so it is less dependent on bounding box fit. Our code uses sorting
by triangle area instead of randomizing the exterior edge order, so it favors a higher
polygon/bounding box area ratio.

A method with O(log n) performance is the inclusion algorithm (Preparata and
Shamos 1985). The polygon is preprocessed by adding a central point to it and is then
divided into wedges. The angles from an anchor edge to each wedge’s edges are com-
puted and saved, along with half-plane equations for the polygon edges. When a point
is tested, the angle from the anchor edge is computed and a binary search is used to
determine the wedge it is in, and then the corresponding polygon edge is tested against
it (Figure 8). Note that this test can be used on any polygon that can be tessellated
into a non-overlapping star of triangles. This algorithm is slower for polygons with few
edges because the startup cost is high, but the binary search makes for a much faster
test when there are many edges. However, if the bounding box is much larger than the
polygon the exterior edge test is faster.

32 <& Polygons and Polyhedra

¢ Statistics <

The timings given in Tables 1-3 were produced on an HP 720 RISC workstation; timings
had similar performance ratios on an IBM PC 386 with no FPU. The general non-convex
algorithms were tested using two sorts of polygons: those generated with random points
and regular (i.e., equal length sides and vertex angles) polygons with a random rotation
applied. Random polygons tend to be somewhat unlikely (no one ever uses 1000-edge
random polygons for anything except testing), while regular polygons are more orderly
than a “typical” polygon; normal behavior tends to be somewhere in between. Test
points were generated inside the bounding box for the polygon. Figute 9 shows a typical
10-sided random polygon and some test points. Convex algorithms were tested with only
regular polygons, and so have a certain bias to them.

Test points were generated inside the box bounding the polygon; looser fitting boxes
yield different results. Timings are in microseconds per polygon. They are given to two
significant figures, since their accuracy is roughly £10%. However, the best way to get
useful timings is to run the code on the target machine; there is a testbed program
provided in the Gems IV code distribution which can be used to try new algorithms
and generate timings under various test conditions. Also, of course, hacking the code
for a particular machine and compiler can make a significant difference.

¢ Discussion <

The crossings test is generally useful, but we can do better. Testing triangles using
either sorted triangle fan algorithm is more than twice as fast, though for polygons
with many edges the crossings test is still faster.

Given enough resolution (and enough memory!), gridding gives near constant time
performance for most normal polygons, though it performs a bit slower when entirely
random polygons are tested. Interestingly, even for polygons with just a few edges the
gridding algorithm outperforms most of the other tests.

Testing times can be noticeably decreased by using an algorithm optimized for convex
testing when possible. For example, the convex sorted half-plane test is 1.4 times faster
for 10-sided polygons than its general case counterpart. For convex polygons with many
edges the inclusion test is extremely efficient because of its O(log n) behavior.

Other algorithms remain to be discovered and tested; for example, a practical general
polygon algorithm with better than O(n) performance and low storage costs would fill
a useful niche.

1.4 Point in Polygon Strategies

Table 1. General Algorithms, Random Polygons
Algorithm Number of edges per polygon

3 4 10 20 50 100 1000
Crossings 28 | 3.1 5.7 10 25 48 470
Half Plane w/edge sort | 1.1 | 1.7 | 5.7 12 32 65 650
Half Plane, no sort 1.2 | 20 | 6.3 14 36 72 740
Spackman w/edge sort | 1.3 | 2.1 6.0 13 32 66 670
Spackman, no sort 1.4] 2.2 6.4 14 35 70 720
Barycentric 24 | 4.0 13 29 76 150 1600
Weiler angle 3.7 1 43| 87 16 39 77 760
Trigonometric angle 42 51 | 110 | 210 | 520 | 1030 | 10300
Grid (100x100) 1.8 (19| 1.9} 1.9 | 22 2.5 9.2
Grid (20x20) 20| 20| 22} 25| 36 5.5 38

Table 2. General Algorithms, Regular Polygons
Algorithm Number of edges per polygon

3 4 10 20 50 100 1000
Crossings 26 | 2.7 4.3 7.2 16 32 300
Half Plane w/edge sort | 1.3 | 1.8 | 4.6 | 9.2 23 45 460
Half Plane, no sort 1.3 | 21 6.7 14 37 74 760
Spackman w/edge sort 1.5 | 2.1 5.4 10 26 51 510
Spackman, no sort 1.5 | 2.3 5.8 11 28 55 550
Barycentric 25 | 4.2 13 26 68 140 1400
Weiler angle 3.5 | 40 7.9 15 35 70 690
Trigonometric angle 39 51 | 120 | 230 | 560 | 1200 | 11100
Grid (100x100) 18 (18] 1.8 | 1.8 | 1.8 1.8 1.9
Grid (20x20) 20 (20| 20| 204 20 2.1 2.8

Table 3. Convex Algorithms, Regular Polygons
Algorithm Number of edges per polygon

3 4 10 20 50 100 1000
Inclusion 55| 57|63 }66 |71 7.6 9.9
Hybrid Sorted Half Plane | 1.3 | 1.6 | 3.3 | 6.1 14 28 280
Sorted Half Plane 1.2 | 1.6 | 3.4 | 6.2 15 29 280
Unsorted Half Plane 1.2 | 1.9 | 5.7 12 30 61 620
Random Exterior Edges 1.3 | 1.7 |38 | 7.1 17 33 320
Ordered Exterior Edges 1.3 17| 38| 73 18 35 350
Convex Crossings 25 | 25| 36| 56 12 22 220

& 33

34 < Polygons and Polyhedra

¢ Conclusions <

e If no preprocessing nor extra storage is available, use the Crossings test.
e If a little preprocessing and extra storage is available:

— For general polygons

* with few sides, use the Half-Plane or Spackman test.
* with many sides, use the Crossings test.

— For convex polygons

* with few sides, use the Hybrid Half-Plane test.
* with many sides, use the Inclusion test.

* But if the bounding box/polygon area ratio is high, use the Exterior
Edges test.

e If preprocessing and extra storage is available in abundance, use the Grid Test
(except for perhaps triangles).

Of course, some of these conclusions may vary with machine architecture and compiler
optimization.

& CCode ¢

ptinpoly.h

/* ptinpoly.h - point in polygon inside/outside algorithms header file.
*/

/* Define CONVEX to compile for testing only convex polygons (when possible,
* this is faster). */
/* #define CONVEX */

/* Define HYBRID to compile triangle fan test for CONVEX with exterior edges
* meaning an early exit (faster - recommended) .

*/

/* #define HYBRID */

/* Define DISPLAY to display test triangle and test points on screen. */
/* #define DISPLAY */

/* Define RANDOM to randomize order of edges for exterior test (faster -
* recommended). */

/* #define RANDOM */

/* Define SORT to sort triangle edges and areas for half-plane and Spackman

1.4 Point in Polygon Strategies

* tests (faster - recommended). */
/* #define SORT */

/* Define WINDING if a non-zero winding number should be used as the criterion
* for being inside the polygon. Only used by the general crossings test and
* Weiler test. The winding number computed for each is the number of
* counterclockwise loops the polygon makes around the point.

*/
/* #define WINDING */

/* Define your own random number generator; change as needed. */
/* SRAN initializes random number generator, if needed. */

#define SRAN() srand48(1)
/* RANO1l returns a double from [0..1) */
#define RANO1 () drand48 ()

double drand48() ;

typedef struct {

double VX, Vy, C ; /* edge equation vx*X + vy*Y + ¢ = 0 */
#ifdef CONVEX
#ifdef HYBRID

int ext_flag ; /* TRUE == exterior edge of polygon */
#endif
#endif
} PlaneSet, *pPlaneSet ;

#ifdef CONVEX
#ifdef SORT
/* Size sorting structure for half-planes */
typedef struct {
double size ;
pPlaneSet ppSs
} SizePlanePair, *pSizePlanePair ;
#endif
#endif

#ifdef CONVEX

pPlaneSet ExteriorSetup{() ;
void ExteriorCleanup()
#ifdef SORT

int CompareSizePlanePairs() ;
#endif

#endif

pPlaneSet PlaneSetup () ;

void PlaneCleanup () ;

o 35

36 <& Polygons and Polyhedra

ptinpoly.c
/* ptinpoly.c - point in polygon inside/outside code.
by Eric Haines, 3D/Eye Inc, erich@eye.com

This code contains the following algorithms:
crossings - count the crossing made by a ray from the test point
half-plane testing - test triangle fan using half-space planes
exterior test - for convex polygons, check exterior of polygon

*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "ptinpoly.h"

#define X 0
#define v 1
#define TRUE 1

#ifndef HUGE
#define HUGE 1.79769313486232e+308

#endif
#define MALLOC_CHECK(a) if (ta)) |
fprintf(stderr, "out of memory\n") ; \
exit (1) ; \
}
/* z==z=z=z=== (Crossings algorithm ==========sr==-c-zs==========c-========z======= */

/* Shoot a test ray along +X axis. The strategy, from MacMartin, is to
* compare vertex Y values to the testing point's Y and quickly discard
* edges which are entirely to one side of the test ray.

* Input 2D polygon _pgon_ with _numverts_ number of vertices and test point
* _point_, returns 1 if inside, 0 if outside. WINDING and CONVEX can be
* defined for this test.
*/
int CrossingsTest{ pgon, numverts, point)
double pgon(][2] ;
int numverts ;
double point(2] ;
{
#1ifdef WINDING

register int crossings ;
#endif
register int j, yflag0, yflagl, inside_flag, xflag0 ;

register double ty, tx, *vtx0, *vtxl ;
#ifdef CONVEX

register int line_flag ;
#endif
tx = point [X]
ty = point[Y]
vtx0 = pgon[numverts-1] ;
/* get test bit for above/below X axis */
yvilag0 = (vtx0[Y] »= ty }
vtxl = pgon([0] ;
#ifdef WINDING
crosgings = 0
#else
inside_flag = ;
#endif
#ifdef CONVEX
line_flag = 0
#endif
for (3§ = numverts+l ; --3 ;) {
vflagl = (vtx1l[Y] »= ty) ;
/* check if endpoints straddle (are on opposite sides) of X axis
* (i.e., the Y's differ); if so, +X ray could intersect this edge.
*/
if (yflag0 != yflagl) {
xflagld = (vtx0([(X] »= tx) ;
/* check if endpoints are on same side of the Y axis (i.e., X's
* are the same); if so, it's easy to test if edge hits or misses.
*/
if (xflag0 == (vtx1[X] »>= tx)) {
/* if edge's X values both right of the point, must hit */
#ifdef WINDING
if (xflag0D) crossings += (yflag0 ? -1 : 1) ;
telse
if (xflag0) inside_flag = !inside_£flag ;
#endif
} else {
/* compute intersection of pgon segment with +X ray, note
* if »= point's X; if so, the ray hits it.
*/
if ((vex1[X] - (vtxl[Y]-ty}*
(vEx0[X]-vEx1[X])/ (vEx0[Y]-vEx1[Y])) >= tx) {
#ifdef WINDING
crossings += (yflag0 ? -1 : 1) ;
#else
inside_flag = !inside_£flag ;
#endif
}
}
#ifdef CONVEX

1.4 Point in Polygon Strategies

/* if this is second edge hit,

then done testing */

37

38 < Polygons and Polyhedra

if (line_flag) goto Exit ;

/* Note that one edge has been hit by the ray's line. */
line_flag = TRUE ;
#endif

/* Move to next pair of vertices, retaining info as possible. */
yflag0 = yflagl ;
vex0 = vtxl ;
vexl += 2 ;
}
#ifdef CONVEX
Exit: ;
#endif
#ifdef WINDING
/* Test i1f crossings is not zero. */
inside_flag = (crossings != 0) ;
#endif

return(inside_flag) ;

/* Split the polygon into a fan of triangles and for each triangle test if
the point is inside of the three half-planes formed by the triangle's edges.

* % X

Call setup with 2D polygon _pgon_ with _numverts_ number of vertices,
which returns a pointer to a plane set array.

Call testing procedure with a pointer to this array, _numverts_, and
test point _point_, returns 1 if inside, 0 if outside.

Call cleanup with pointer to plane set array to free space.

* X *

*

*
* SORT and CONVEX can be defined for this test.
*/

/* Split polygons along set of x axes - call preprocess once. */

pPlaneSet PlaneSetup(pgon, numverts)
double pgon[][2] ;

int numverts ;

{

int i, pl, p2 ;

double tx, ty, vx0, vy0 ;

pPlaneSet pps, pps_return ;

#ifdef SORT
double 1len[3], len_temp ;

int J o

PlaneSet ps_temp ;
#ifdef CONVEX

pPlaneSet pps_new ;

pSizePlanePair p_size_pair ;

#endif
#endif

pps

1.4 Point in Polygon Strategies

= pps_return =

(pPlaneSet)malloc(3 * (numverts-2) * sizeof(PlaneSet })

MALLOC_CHECK(pps)

#ifdef
#ifdef

CONVEX
SORT

p_size_pair
(pSizePlanePairimalloc((numverts-2) * sizeof(
MALLOC_CHECK (

#endif
#endif

vx0
vy0

for

#ifdetf

#ifdef
#ifdef

#tendif

#endif
#endif

#ifdef

#endif
#ifdef
#ifdef

#endif
#endif

p_size_pair) ;

= pgon(0] |] ;

= pgon[0][:

(pl =1, p2 = 2 ; p2 < numverts ; pl++, pP2++
pps->vx = vy0 - pgon[pl][Y] ;

pps->vy = pgon[pl]{X] - vx0 ;

pps->c = pps->vx * vx0 + pps->vy * vy0 ;

SORT

len[0]) = pps->VX * ppsS->VX + PPS->Vy * pps->Vy
CONVEX

HYBRID

pps->ext_flag = (pl == 1) ;

/* Sort triangles by areas, so compute (twice)

p_size_pair([pl-1
p_size_pair(pl-1

pps++
pPpsS->VX
Dps->vy
pps->C =
SORT

len[1l] =

CONVEX
HYBRID

SizePlanePair

{

i

the area here.

].pps = pps ;

].size =

(pgon[0] (X] * pgon[pl][Y]) +

(pgon[pl] [X] * pgon[p2][Y])

(pgon[p2] [X] * pgon[0] (Y]) -

(pgon[pl] {X] * pgon[0][Y]) -

(pgon[p2}{X] * pgon(pl][Y])

(pgon[0] [X] * pgon[p2]([Y]) ;
pgon([pl] [Y] - pgon{p2]{ H
pgon[p2] [X] - pgon(pl][] ;

pps->vxX * pgon[pll [X] + pps->vy * pgon(pl]{Y] ;

pPpsS->vX * ppS->VX + PPS->Vy * pps->vy

pps~->ext_flag = TRUE ;

pps++
pps->vx

pps~>vy

pgon([p2] [¥Y] - vy0 ;
vx0 - pgon[p2][X] ;

’

7

)

*/

& 39

40 < Polygons and Polyhedra

pps->C = pps->vx * pgon([p2] [X] + pps->vy * pgon[p2][Y] ;
#1fdef SORT
len[2] = pps->vx * pps->vX + DPpsS->Vvy * ppsS->Vy ;
#endif
#ifdef CONVEX
#ifdef HYBRID
pps->ext_flag = (p2 == numverts-1) ;
#endif
#endif

/* Find an average point that must be inside of the triangle. */
tx = { vx0 + pgon(pl] [X] + pgon(p2](X]) / 3.0 ;
ty = (vy0 + pgon[pll (Y] + pgon[p2]{Y]) / 3.0 ;

/* Check sense and reverse if test point is not thought to be inside
* first triangle.
*/
if (pps->Vx * tX + pps->Vy * ty >= pps->c) |

/* back up to start of plane set */

pps -= 2 ;

/* Point is thought to be outside, so reverse sense of edge

* normals so that it is correctly considered inside.

*/
for (i =0 ; 1 < 3 ; i++) {
pPpsS->vxX = -pPpPS->VX ;
pPps->vy = -pPPS->Vy ;
pps-»>C = -pps->C ;
pps++ ;
}
} else {
pps++

#ifdef SORT
/* Sort the planes based on the edge lengths. */

pps -= 3 ;
for (1 =0 ; 1 < 2 ; i++) {
for (j = i+l ; j < 3 ; d++) {
if (len[i] < len(3j]l) {

ps_temp = ppsli] ;
ppsli] = pps(ji] ;
ppsli} = ps_temp ;
len_temp = len[i] ;
len{i] = len[j] ;
lenl[j]l = len_temp ;

}
pps += 3 ;
#endif
}

#ifdef CONVEX

ol

1.4 Point in Polygon Strategies

#ifdef SORT
/* Sort the triangles based on their areas. */
gsort{ p_size_pair, numvertg-2,
sizeof(SizePlanePair), CompareSizePlanePairs) ;

/* Make the plane sets match the sorted order. */
for (1 = 0, pps = pps_return

; 1 < numverts-2

;oi++) |

pps_new = p_size_pair(i].pps ;

for { J =0 ; J < 3 ; J++, pps++, pps_new++) {
ps_temp = *pps ;
*pps = *pps_new ;
*pps.new = ps_temp ;

}

free(p_size_pair) ;
#endif
#endif

return{ pps_return) ;

#ifdef CONVEX

#ifdef SORT

int CompareSizePlanePairs{ p_sp0, p_spl)
pSizePlanePair p_sp0, p_spl ;

{

if (p_spO-»size == p_spl-»size) {
return(0) ;
} else {

return{ p_spO->size > p_spl-»size ? -1 : 1) ;

}
#endif
#endif

/* Check point for inside of three "planes" formed by triangle edges. */
int PlaneTest (p_plane_set, numverts, point)

pPlaneSet p_plane_set ;

int numverts ;

double point(2] ;

{

register pPlaneSet s
register int P2 ;

#ifndef CONVEX

register int inside_flag ;
tendif

register double tx, ty ;

tx = point[X] ;

o

41

42 < Polygons and Polyhedra

ty = point([Y] ;

#ifndef CONVEX
inside_flag = 0 ;
#endif

for (ps = p_plane_set, p2 = numverts-1 ; --p2 ;) {

if (ps->vX * tx + ps->Vvy * ty < ps->c) {
ps++
if (ps->Vx * tX + ps->vy * ty < ps->c } {
pS++
/* Note: we make the third edge have a slightly different
* equality condition, since this third edge is in fact
* the next triangle's first edge. ©Not fool-proof, but
* it doesn't hurt (better would be to keep track of the
* triangle's area sign so we would know which kind of

* triangle this is). Note that edge sorting nullifies
* this special inequality, too.
*/

if (ps->VvxX * tX + ps->vy * ty <= ps->c) {
/* point is inside polygon */
#ifdef CONVEX
return(1) ;
#else
inside_flag = !'inside_flag ;
#endif

#ifdef CONVEX
#ifdef HYBRID
/* check if outside exterior edge */
else if (ps->ext_flag) return(0) ;
#endif
#endif
pS++
} else {
#ifdef CONVEX
#ifdef HYBRID
/* check if cutside exterior edge */
if (ps-»ext_flag)} return(0) ;
#endif
#endif
/* get past last two plane tests */
ps += 2 ;
}
} else {
#ifdef CONVEX
#ifdef HYBRID
/* check if outside exterior edge */
if (ps-»ext_flag) return(0 } ;
#endif
#endif
/* get past all three plane tests */

1.4 Point in Polygon Strategies < 43

ps += 3 ;

#i1fdef CONVEX
/* for convex, if we make it to here, all triangles were missed */
return(0) ;

#else
return(inside_flag) ;

#endif

}

void PlaneCleanup(p_plane_set)
pPlaneSet p_plane_set ;
{

free(p_plane_set) ;

/* ======= Exterior (convex only) algorithm =z=====z=z=========z=zz===z==z=z======= */

/* Test the edges of the convex polygon against the point. If the point is
* outside any edge, the point is outside the polygon.

* Call setup with 2D polygon _pgon_ with _numverts_ number of vertices,
* which returns a pointer to a plane set array.

* Call testing procedure with a pointer to this array, _numverts_, and
* test point _point_, returns 1 if inside, 0 if outside.

* Call cleanup with pointer tco plane set array to free space.

* RANDOM can be defined for this test.
* CONVEX must be defined for this test; it is not usable for general polygons.

#ifdef CONVEX

/* make exterior plane set */

pPlaneSet ExteriorSetup(pgon, numverts)
double pgonf{li{2] ;

int numverts ;

{

int pl, p2, flip_edge ;
pPlaneSet pps, pps_return ;
#ifdef RANDOM

int i, ind ;

PlaneSet ps_temp ;

#endif

pPps = pps_return =
(pPlaneSet)malloc{ numverts * sizeof(PlaneSet)) ;
MALLOC_CHECK(pps) ;

/* take cross product of vertex to find handedness */
flip_edge = (pgon[0]([X] - pgon[l](X]) * (pgon[l]{Y] - pgon[2][Y]) >

44 < Polygons and Polyhedra

(pgon[0] (Y] - pgon[l]([Y¥]) * (pgonl[l]l[X] - pgon[2][X]) ;

/* Generate half-plane boundary equations now for faster testing later.
* yx & vy are the edge's normal, ¢ is the offset from the origin.
*/
for (pl = numverts-1, p2 = 0 ; p2 < numverts ; pl = p2, p2++, DPPS++) {
pps->vx = pgon([pl] [Y] pgon[p2] [Y] ;
pps->vy = pgon[p2][X] - pgon(pl][X] ;
pps->c = pps->vx * pgon[pl] [X] + pps->vy * pgon[pl] (Y] ;

/* check sense and reverse plane edge if need be */
if (flip_edge) {

pPpPS->VX = -ppPS->VX ;
pPps->vy = -pps->Vy ;
pps->C = -pps->C ;

#ifdef RANDOM
/* Randomize the order of the edges to improve chance of early out. */
/* There are better orders, but the default order is the worst. */
for (1 = 0, pps = pps_return
; 1 < numverts

;oil++) {
ind = (int) (RANO1() * numverts) ;
if ((ind < 0) Il (ind »>= numverts)) {

fprintf{ stderr,

"vikes, the random number generator is returning values\n") ;
fprintf (stderr,

"outside the range [0.0,1.0), so please fix the code!\n") ;
ind = 0 ;

/* swap edges */
ps_temp = *pps ;
*pps = pps_return(ind] ;
pps_return(ind] = ps_temp ;
}
#endif
return(pps_return) ;

/* Check point for outside of all planes. */
/* Note that we don't need "pgon", since it's been processed into
* its corresponding PlaneSet.

*/

int ExteriorTest (p_ext_set, numverts, point)
pPlaneSet p_ext_set ;

int numverts ;

double point[2] ;
{
register PlaneSet *pps

1.4 Point in Polygon Strategies < 45

register int pl ;
register double tx, ty ;
int inside_flag ;

tx
ty

point [X] ;
point [Y] ;

on

for (p0 = numverts+1l, pps = p_ext_set ; --p0 ; pps++) {

/* Test 1f the point is outside this edge. */
if (pps-»vx * tx + pps-»vy * ty > pps->c) {
return(0) ;
}
}
/* If we make it to here, we were inside all edges. */
return{ 1) ;

}

void ExteriorCleanup{ p_ext_set)
pPlaneSet p_ext_set ;
{
free(p_ext_set) ;
}
#endif

¢ Bibliography <

(Antonio 1992) Franklin Antonio. Faster line segment intersection. In David Kirk,
editor, Graphics Gems I, pages 199-202. Academic Press, Boston, 1992.

(Badouel 1990) Didier Badouel. An efficient ray-polygon intersection. In Andrew Glass-
ner, editor, Graphics Gems, pages 390-393. Academic Press, Boston, 1990.

(Berlin 1985) Jr. Edwin P. Berlin. Efficiency considerations in image synthesis. In
SIGGRAPH ’85 State of the Art in Image Synthesis seminar notes, July 1985.

(Glassner 1989) A. Glassner, editor. An Introduction to Ray Tracing. Academic Press,
London, 1989.

(Green 1993) Chris Green. Simple, fast triangle intersection. Ray Tracing News 6(1),
E-mail edition, anonymous ftp from princeton.edu:/pub/Graphics/RT News, 1993.

(Hacker 1962) R. Hacker. Certification of algorithm 112: position of point relative to
polygon. Communications of the ACM, 5:606, 1962.

(Haines 1992) Eric Haines, editor. Fastest point in polygon test. Ray Tracing News
5(3), E-mail edition, anonymous ftp from princeton.edu:/pub/Graphics/RTNews,
1992.

46 < Polygons and Polyhedra

(Hanrahan and Haeberli 1990) Pat Hanrahan and Paul Haeberli. Direct WYSIWYG
painting and texturing on 3d shapes. Computer Graphics (SIGGRAPH 90 Pro-

ceedings), 24(4):215-223, August 1990.

(Preparata and Shamos 1985) F. P. Preparata and M. 1. Shamos. Computational Ge-
ometry: An Introduction. Springer-Verlag, New York, NY, 1985.

(Salesin and Stolfi 1989) David Salesin and Jorge Stolfi. The ZZ-buffer: A simple and
efficient rendering algorithm with reliable antialiasing. In Proc. 2nd Intl. Conf. on
Computer Graphics (PIXIM ’89), pages 451-465, Paris, France, 1989.

(Schorn and Fisher 1994) Peter Schorn and Frederick Fisher. Testing the convexity of
a polygon. In Paul Heckbert, editor, Graphics Gems IV, 7-15. Academic Press,

Boston, 1994.

(Shimrat 1962) M. Shimrat. Algorithm 112: position of point relative to polygon. Com-
munications of the ACM, 5:434, 1962.

(Spackman 1993) John Spackman. Simple, fast triangle intersection, part ii.
Ray Tracing News 6(2), E-mail edition, anonymous ftp from prince-

ton.edu:/pub/Graphics/RTNews, 1993.

(Weiler 1994) Kevin Weiler. An incremental angle point in polygon test. In Paul
Heckbert, editor, Graphics Gems IV, 16-23. Academic Press, Boston, 1994.

(Woo 1992) Andrew Woo. Ray tracing polygons using spatial subdivision. In Proceed-
ings of Graphics Interface '92, pages 184-191, May 1992.

(Worley and Haines 1993) Steve Worley and Eric Haines. Bounding areas for
ray /polygon intersection. Ray Tracing News 6(1), E-mail edition, anonymous ftp

from princeton.edu:/pub/Graphics/RTNews, 1993.

1.5

Incremental Delaunay
Triangulation

Dani Lischinski

580 ETC Building
Cornell University
Ithaca, NY 14853
danix @graphics.cornell.edu

¢ Introduction <

This Gem gives a simple algorithm for the incremental construction of the Delaunay
triangulation (DT) and the Voronoi diagram (VD) of a set of points in the plane.
A triangulation is called Delaunay if it satisfies the empty circumcircle property: the
circumcircle of a triangle in the triangulation does not contain any input points in its
interior. DT is the straight-line dual of the Voronoi diagram of a point set, which is a
partition of the plane into polygonal cells, one for each point in the set, so that the cell
for point p consists of the region of the plane closer to p than to any other input point
(Preparata and Shamos 1985, Fortune 1992).

Delaunay triangulations and Voronoi diagrams, which can be constructed from
them, are a useful tool for efficiently solving many problems in computational geome-
try (Preparata and Shamos 1985). DT is optimal in several respects. For example, it
maximizes the minimum angle and minimizes the maximum circumcircle over all pos-
sible triangulations of the same point set (Fortune 1992). Thus, DT is an important
tool for high-quality mesh generation for finite elements (Bern and Eppstein 1992). It
should be noted, however, that standard DT doesn’t allow edges that must appear in
the triangulation to be specified in the input. Thus, in order to mesh general polygo-
nal regions the more complicated constrained DT should be used (Bern and Eppstein
1992).

The incremental DT algorithm given in this Gem was originally presented by Green
and Sibson (Green and Sibson 1978), but the implementation is based entirely on the
quad-edge data structure and the pseudocode from the excellent paper by Guibas and
Stolfi (Guibas and Stolfi 1985). I will briefly describe the data structures and the algo-
rithm, but the reader is referred to Guibas and Stolfi for more details.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

47 Macintosh ISBN 0-12-336156-7

48 < Polygons and Polyhedra

e[ZQ
a

we —— =44 o257
AR Y N A
\/6[3] -
c
j |el0]
O y~

(@ (b) (©

=2

Figure 1. The quad-edge data structure.

¢ The Quad-Edge Data Structure <

The quad-edge data structure (Guibas and Stolfi 1985) was designed for representing
general subdivisions of orientable manifolds. It is similar to the winged-edge data struc-
ture (Baumgart 1975), but it simultaneously represents both the subdivision and its
dual. Each quad-edge record groups together four directed edges corresponding to a
single undirected edge in the subdivision and to its dual edge (Figure la). Each di-
rected edge has two pointers: a next pointer to the next counterclockwise edge around
its origin, and a data pointer to geometrical and other nontopological information (such
as the coordinates of its origin.)

Figures 1b and 1lc illustrate how three edges incident on the same vertex are repre-
sented using the quad-edge data structure: the vertex itself corresponds to the inner
cycle of pointers in Figure 1c. The remaining three cycles correspond to the three faces
meeting at the vertex.

Aside from a primitive to create an edge (MakeEdge), a single topological operator
Splice is defined that can be used to link disjoint edges together as well as to break
two linked edges apart. This operator is its own inverse and together with MakeEdge it
can be used to construct any subdivision.

{ The Incremental Algorithm ¢

The incremental DT algorithm starts with a triangle large enough to contain all of the
points in the input. Points are added into the triangulation one by one, maintaining
the invariant that the triangulation is Delaunay. Figure 2 illustrates the point insertion
process. First, the triangle containing the new point p is located (2a). New edges are
created to connect p to the vertices of the containing triangle (2b). The old edges of the
triangle are inspected to verify that they still satisfy the empty circumcircle condition.

L1

ng
1c-
its
) 8,
di-
nd
1ch

re-
ner
T/

itor
eak
e it

"the
ning
tion
, are
f the
tion.

1.5 Incremental Delaunay Triangulation > 49

() 6

Figure 2. Inserting a point into the triangulation. Dashed lines indicate edges that need to be inspected
by the algorithm.

50 <& Polygons and Polyhedra

/™ “,
sy

‘%

X
K]

%

/S

2>

AYA
XX

A
%
i

P
v
N

V2
7\

4
X

Ay
=

Figure 3. The DT (left) and the VD (right) of 250 random points uniformly distributed in the unit square.

If the condition is satisfied (2¢) the edge remains unchanged. If it is violated (2d) the
offending edge is flipped, that is, replaced by the other diagonal of the surrounding
quadrilateral. In this case two more edges become candidates for inspection (edges a
and b in Figure 2e.) The process continues until no more candidates remain, resulting
in the triangulation shown in Figure 2f.

In the worst case the insertion of a point can require O(n) edges to be flipped.
However, in practice the average number of edges tested per insertion is small (< 9).
Guibas, Knuth, and Sharir have shown that if the insertion order is randomized, the
expected time is O(1) per insertion (Guibas et al. 1990).

Locating the containing triangle can be done in an optimal O(logn) time, but this
requires maintaining complicated data structures. Alternatively, the triangle can be
located by starting from an arbitrary place in the triangulation and moving in the
direction of p until the containing triangle is reached. This requires O(n) time, but if
the inserted points are uniformly distributed, the expected number of operations to
locate a point is only O(nl/ 2). A simple improvement is always to resume the search
from the triangle that was found last: in this way, when the points to be located are
near each other, the containing triangles are determined quickly.

Figure 3 shows the DT and the corresponding VD produced by this algorithm from
250 random points in the unit square. Note that because the quad-edge data structure
represents both the triangulation and its dual, the topology of the Voronoi diagram is
readily available from the DT constructed by the algorithm. To have a complete VD
one only needs to compute the circumcenters of all the triangles (i.e., the locations of
the Voronoi vertices).

1.5 Incremental Delaunay Triangulation {51

¢ Robustness <

In order to produce a practical implementation of a geometric algorithm, one typically
needs to address two problems: geometric degeneracies and numerical errors. For DT,
four or more cocircular points in the input constitute a geometric degeneracy, and the
resulting DT is not unique. In such a case this algorithm will produce one of the possible
triangulations as output.

Dealing with numerical errors is more difficult. Various applications in which the need
for DT or VD arises differ in the nature of their input and in their output accuracy
requirements. Therefore, it is very difficult to come up with a single efficient solution
to the problem. Karasick, Lieber, and Nackman suggest a solution that uses rational
arithmetic as well as survey other approaches (Karasick et al. 1991).

In this implementation all the computations are performed using standard floating-
point arithmetic. Epsilon tolerances are used to determine whether two points coincide
and whether a point falls on an edge. No other special measures to ensure robust-
ness were taken. Nevertheless, largely because of the simplicity of the algorithm, the
implementation has proven to be very robust.

O C++Code ¢

The code listed below is the C++ implementation of the quad-edge data structure and
the incremental Delaunay triangulation algorithm. In addition, the disk that comes
with this book contains code for 2D vectors, points, and lines, and a test program. This
program constructs and displays a triangulation, allowing the user to add more points
into the triangulation interactively by clicking a mouse button at the place of insertion.
The code should compile and execute on SGI graphics workstations.

#include <geom2d.h>
class Quadkdge;

class Edge {
friend Quadkdge;
friend void Splice(Edge*, Edge*);
private:
int num;
Edge *next;
Point2d *data;
public:
Edge () { data = 0; }
Edge* Rot ();
Edge* invRot () ;
Edge* Sym();
Edge* Onext () ;
Edge* Oprev() ;

52 < Polygons and Polyhedra

Edge* Dnext () ;
Edge* Dprev

(
(
Edge* Lnext (
(
(

B

)
)
)i
Edge* Lprev();

Edge* Rnext ()

Edge* Rprev ()

Point2d* Org();

Point2d* Dest (};

consgt Point2d& Org2d()} const;

const Point2d& Dest2d() const;

void EndPoints (Point2d*, Point2d*);

QuadEdge* Qedge() { return (QuadEdge *) (this - num); }

i

;

}s

class QuadEdge {
friend Edge *MakeEkEdge();
private:
Edge el4];
public:
QuadEdge () ;
}s

class Subdivision {
private:
Edge *startingEdge;
Edge *Locate{const Point2d&);
public:
Subdivision(const Point2d&, const Point2d&, const Point2d&);
void InsertSite({const Point2ds&);
vold Draw();
}:

inline QuadEdge: :QuadEdge ()
{

e[0].num = 0, el(l]l.num = 1, e[2].num = 2, e[3].num = 3;
e[0] .next = &(e[0]); e[l]l.next = &(e[3]);
e[2].next = &(e[2]); el[3].next = &{e{ll):

JEERERI I KKK AR KKK I AKX A ALK Edge Algebra hkkkkkhkkk kA k kKA hkkhhFAI KRRk XX hk ko h &Kk /

inline Edge* Edge::Rot ()}
// Return the dual of the current edge, directed from its right to its left.
{

return {num < 3) ? this + 1 : this - 3;

inline Edge* Edge::invRot ()
// Return the dual of the current edge, directed from its left to its right.
{

return (num > 0) ? this - 1 : this + 3;

1.5 Incremental Delaunay Triangulation

inline Edge* Edge::Sym()
// Return the edge from the destination to the origin of the current edge.

{

return (num < 2) ? this + 2 : this - 2;

inline Edge* Edge::Onext ()
// Return the next ccw edge around (from) the origin of the current edge.

{

return next;

inline Edge* Edge::Oprev ()
// Return the next cw edge around (from) the origin of the current edge.

{

return Rot ()->Onext ()->Rot ();

inline Edge* Edge::Dnext ()

// Return the next ccw edge around (into) the destination of the current edge.

{

return Sym()}->Onext ()->Sym{) ;

inline Edge* Edge::Dprev ()
// Return the next cw edge around (into) the destination of the current edge.

{

return invRot () ~>Onext ()->invRot () ;

inline Edge* Edge::Lnext ()
// Return the ccw edge around the left face following the current edge.

{

return invRot () ->Onext () ->Rot () ;

inline Edge* Edge::Lprev ()
// Return the ccw edge around the left face before the current edge.
{

return Onext ()} ->Sym();

inline Edge* Edge::Rnext ()
// Return the edge around the right face ccw following the current edge.
{

return Rot () ->»>Onext () ->invRot () ;

inline Edge* Edge::Rprev()
// Return the edge around the right face ccw before the current edge.
{

return Sym()->Onext () ;

54 & Polygons and Polyhedra

JRx KKK A KA AK KK FF Acceags Lo Data Pointersg *kkkkk sk kokdkor ok kokok ok okok ok ok ok ok ok ok ok ok ok ok ok ok ok & ok ok ok /

inline Point2d* Edge: :0rg{)
{
return data;

inline Point2d* Edge: :Dest ()
{

return Sym()->data;

inline const Point2d& Edge::0rg2d() const
{

return *data;

inline const Point2d& Edge::Dest2d() const
{
return {num < 2) ? *{({this + 2)->data) : *((this - 2)->data);

inline void Edge: :EndPoints (Point2d* or, Point2d* de)
{

data = or;

Sym()->data = de;

JRAEFKKK KKK KKK X A KKK KKK KN ** Bagic Topological Operators KKK KKK Kk Kk Kk ok Kk k kK ok k kK kK)

Edge* MakeEdge ()

{
QuadEdge *gl = new QuadEdge;
return gl->e;

void Splice(Edge* a, Edge* b)
// This operator affects the two edge rings around the origins of a and b
// and, independently, the two edge rings around the left faces of a and b.
// In each case, (i) if the two rings are distinct, Splice will combine
// them into one; (ii) if the two are the same ring, Splice will break it
// into two separate pieces.
// Thus, Splice can be used both to attach the two edges together and
// to break them apart. See Guibas and Stolfi (1985, p. 96) for more details
// and illustrations.
{

Edge* alpha = a->Onext()->Rot();

Edge* beta = b->Onext()->Rot{();

Edge* tl = b->Onext();
Edge* t2 = a->Onext();
Edge* t3 = beta->»Onext{();
Edge* t4 = alpha->Onext{);

1.5 Incremental Delaunay Triangulation

a-»next = tl;
b->»next = t2;
alpha-»next = t3;
beta->next = t4;

void DeleteEkdge (Edge* e)

{
Splice(e, e->Oprev());
splice({e->Sym(), e->Sym{()
delete e->Qedgel();

->0Oprev()});
}

Jr*Rxxxxxdkkkkx% Topological Operations for Delaunay Diagrams *****xxxxxkkkkxix/
:Subdivision(const Point2d& a, const Point2d& b,

// Initialize a subdivision to the triangle defined by the points a,

{

Subdivision: consgt Point2d& c)

b, c.

Point2d *da, *db, *dc;
da = new Point2d{(a), db =
Edge* ea = MakeEdge()
ea->EndPoints(da, db);
Edge* eb = MakeEdge()
Splice(ea->Sym(), eb};
eb->EndPoints (db, dc);
):
)i
)
)

new Point2d(b), dc = new Point2d(c);

i

Edge* ec = MakeEdge(
Splice(eb->Sym(), ec
ec->EndPoints (dc, da
Splice(ec->Sym(}, ea
startingkdge = ea;

h
7
i

i

Edge* Connect {Edge* a, Edge* b)
// Add a new edge e connecting the destination of a to the

// origin of b, in such a way that all three have the same
// left face after the connection is complete.
// Additionally, the data pointers of the new edge are set.
{

Edge* e = MakeEdgel();

Splice(e, a->Lnext()});

Splice(e->Sym(), b):;

e->EndPoints (a->Dest (), b->0rg());

return e;

void Swap (Edge* e)
// Essentially turns edge e counterclockwise inside its enclosing
// quadrilateral. The data pointers are modified accordingly.
{
Edge* a = e->Oprev();
Edge* b = e->Sym()->0prev();
Splice(e, a);

o 55

56 < Polygons and Polyhedra

Splice(e~->Sym{), b);

Splice(e, a->Lnext());
Splice(e->Sym(), b->Lnext());
e->EndPoints (a->Dest (), b->Dest());

[FEFFHFHRE R KXk X% Gaometric Predicates for Delaunay Diagrams *****x*skxkxkxixk/

inline Real TriArea(const Point2d& a, const Point2d& b, const Point2d& c)
// Returns twice the area of the oriented triangle (a, b, ¢), i.e., the
// area is positive if the triangle is oriented counterclockwise.

{

return (b.x - a.X)*(c.y - a.y) - (b.y - a.y)*(c.x - a.x);

int InCircle(const Point2d& a, const Point2d& b,
const Point2d& c, const Point2d& d)
// Returns TRUE if the point d is inside the circle defined by the
// points a, b, ¢. See Guibas and Stolfi (1985) p.107.
{

return (a.x*a.x + a.y*a.y) * TriArea(b, ¢, d) -
(b.x*b.X + b.y*b.y) * TriArea(a, c, d) +
(c.x*c.x + c.y*c.y) * TriArea(a, b, 4) -
(d.x*d.x + d.y*d.y) * TriArea(a, b, c) > 0;

int ccw(const Point2d& a, const Point2d& b, const Point2d& c)
// Returns TRUE if the points a, b, ¢ are in a counterclockwise order

{
return (TriArea(a, b, c¢) > 0);
int RightOf (const Point2d& x, Edge* e)

return ccw(x, e-»Dest2d(), e->0rg2d());

int LeftOf (const Point2d& x, Edge* e)

return ccw(x, e->0rg2d(), e->Dest2d());

int OnEdge{const Point2d& x, Edge* e)

// A predicate that determines if the point x is on the edge e.
// The point is considered on if it is in the EPS-neighborhood
// of the edge.

{
Real tl1, t2, t3;
tl = (x - e->0rg2d{()) .norm();
£t2 = {(x - e->Dest2d()).norm();
if (tl < EPS (| t2 < EPS)

return TRUE;
t3 = (e->0rg2d{) - e->»Dest2d()).norm();

1.5 Incremental Delaunay Triangulation

if (€1 > £3 |1 £2 > £3)
return FALSE;
Line line(e->0rg2d(), e->Dest2d());

return (fabs(line.eval(x)) < EPS);

}

Jrxkxxxxkkxsxx Ap Incremental Algorithm for the Construction of *xxxxrxxwkxsx/

KKK K K ok K K Kk K K Kk K K K K ok ok ok Delaunay Diagrams I ZEE RS EEEEEEE S R EES AR EEEEEE LN

Edge* Subdivision::Locate(const Point2d& x)

// Returns an edge e, such that either x is on e, or e is an edge of
// a triangle containing x. The search starts from startingEdge

// and proceeds in the general direction of x. Based on the

// pseudocode in CGuibas and Stolfi (1985, p. 121).

{
Edge* e = startingEdge;

while (TRUE) {

if (x == e->0rg2d() |l x == e->Dest2d())
return e;
else if (RightOf(x, e))
e = e->8ym{);
else 1f (!RightOf{x, e-»0Onext(}))
e = e->Onext();
else if (!RightOf(x, e->Dprev()))
e = e->Dprev();
else
return e;

void Subdivision::InsertSite(const Point2d& x)
// Inserts a new point into a subdivision representing a Delaunay
// triangulation, and fixes the affected edges so that the result
// is still a Delaunay triangulation. This is based on the
// pseudocode from Guibas and Stolfi (1985, p. 120), with slight
// modifications and a bug fix.
{
Edge* e = Locate(x);
if ((x == e->0rg2d()) || (x == e->Dest2d())) // point is already in
return;
else if (OnEdge(x, e)) {
e = e->Oprev{);
DeleteEdge (e->0Onext ()) ;
}

// Connect the new point to the vertices of the containing
// triangle (or quadrilateral, if the new point fell on an
// existing edge).

Edge* base = MakeEdgel():;

base->EndPoints (e->0rg (), new Point2d(x));

Splice(base, e);

startingkdge = base;

&

57

58 < Polygons and Polyhedra

do {
base = Connect (e, base->Sym{));
e = base->Oprev();
} while (e-»Lnext () != startingkdge);
// Examine suspect edges to ensure that the Delaunay condition
// is satisfied.

do {
Edge* t = e->Oprev();
if (RightOf (t->Dest2d(), e) &&
InCircle(e->0rg2d(), t->Dest2d(), e->Dest2d(), x)) {
Swap(e) ;
e = e->0Oprev();
}
else if (e->Onext () == startingEdge) // no more suspect edges
return;
else // pop a suspect edge
e = e->Onext ()->Lprev();

} while (TRUE);
}

/***/

¢ Bibliography <

(Baumgart 1975) B. G. Baumgart. A polyhedron representation for computer vision. In
1975 National Computer Conference, volume 44 of AFIPS Conference Proceedings,
pages 589-596. AFIPS Press, Arlington, VA, 1975.

(Bern and Eppstein 1992) Marshall Bern and David Eppstein. Mesh generation and
optimal triangulation. In F. K. Hwang and D.-Z. Du, editors, Computing in Fu-
clidean Geometry, pages 23-90. World Scientific, Singapore, 1992. '

(Fortune 1992) Steven Fortune. Voronoi diagrams and Delaunay triangulations. In
F. K. Hwang and D.-Z. Du, editors, Computing in Fuclidean Geometry, pages
193-233. World Scientific, Singapore, 1992.

(Green and Sibson 1978) P. J. Green and R. Sibson. Computing Dirichlet tessellations
in the plane. Computer Journal, 21(2):168-173, 1978.

(Guibas and Stolfi 1985) Leonidas Guibas and Jorge Stolfi. Primitives for the manip-
ulation of general subdivisions and the computation of Voronoi diagrams. ACM
Transactions on Graphics, 4(2):74-123, 1985.

(Guibas et al. 1990) L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremen-
tal construction of Delaunay and Voronoi diagrams. In Proc. 17th Int. Collog. —
Automata, Languages, and Programming, volume 443 of Springer-Verlag LNCS,
pages 414-431. Springer-Verlag, Berlin, 1990.

1.5 Incremental Delaunay Triangulation < 59

(Karasick et al. 1991) Michael Karasick, Derek Lieber, and Lee R. Nackman. Efficient
Delaunay triangulation using rational arithmetic. ACM Transactions on Graphics,
10(1):71-91, 1991.

(Preparata and Shamos 1985) Franco P. Preparata and Michael lan Shamos. Compu-
tational Geometry. Springer-Verlag, New York, 1985.

1.6

Building Vertex Normals from an
Unstructured Polygon List

Andrew Glassner

Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304
glassner@parc.xerox.com

& Abstract ¢

Many polygonal models are used as piecewise-flat approximations of curved models,
and are thus “smooth-shaded” when displayed. To apply Gouraud or Phong shading
to a model one needs to compute a surface normal at every vertex; often this simply
involves averaging the surface normal of each polygon sharing that vertex.

This Gem provides a general-purpose procedure that computes vertex normals from
any list of polygons. I assume that the polygons describe a simple manifold in 3D space,
so that every local neighborhood is a flat sheet. I also assume that the structure is a
mesh; that is, there are no “T” vertices, isolated vertices, or dangling edges. Except for
the addition of normals at the vertices, the input model is unchanged.

I infer the topology of the model by building a data structure that allows quick access
to all the polygons that have a vertex in the same region of space. To find the normal
for a selected vertex, one needs only search the region surrounding the vertex and then
average the normals for all polygons that share that vertex.

& Overview <

Polygons continue to be a popular primitive for approximating curved surfaces. To make
polygonal models look smooth we can use Gouraud or Phong shading, often supported
by hardware. Both of these techniques require a normal at each vertex of each polygon.

Typically a vertex normal is computed by combining the normals of all the poly-
gons that share that vertex. A number of different strategies for this computation are
presented in (Glassner 1990), but they all require that the polygons be identified first.
When the polygons are generated in a mesh, it is easy to find all the polygons that
share a vertex.

Some shape-generation programs are not so cooperative and instead generate poly-
gons according to a less organized scheme. The result is a big list of polygons, each

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

Macintosh ISBN 0-12-336156-7 60

1.6 Building Vertex Normals from an Unstructured Polygon List ¢ 61

identified by a list of explicit vertices. The trick then becomes finding which vertices
are held in common by which polygons.

This Gem presents a piece of code that will run through all the polygons, identify
shared vertices to infer the topology of the model, and average together the appropriate
polygons to build vertex normals. Two vertices are labeled identical if they have very
similar coordinates, to within a small tolerance.

I found it useful to provide a simple form of edge preservation for meshes, an idea
originally introduced by Gouraud (Foley et al. 1990). If two adjacent polygons are
sufficiently far from flat, then they are not averaged together at a common vertex.
The use of edge preservation and its tolerance are selectable by the client (the calling
routine).

The general idea is first to initialize the package, and then feed in a sequence of
polygons in any order. When all the polygons are in, call a routine to compute all the
normals. You then use the normals somehow (perhaps writing the resulting, augmented
polygons to a file), and then free up the memory the package allocated.

¢ The Algorithm <

The algorithm used here is very simple. A few data structures guide the way.

First is the Polygon, which contains explicit storage for each vertex and its normal,
and some bookkeeping information such as the polygon’s own normal, its number of
vertices, and so on.

The central organization comes from a hash table, which is made up of a linked list
of HashNode structures. Each of these structures represents one vertex; it points to the
polygon containing the vertex, identifies it by number, and provides its status, which
is one of waiting, working, or done (explained ahead).

Polygons are entered one by one into the database. The client passes in a pointer to
a list of vertices (an array of Point3 structures), which is then copied, so the client can
free or re-use that memory. When a polygon is entered, its normal is computed using
Newell’s method (Sutherland et al. 1974) (Tampieri 1992), and its vertices are inserted
into the hash table. Fach vertex is marked as waiting.

To compute normals, the system scans the list stored at each entry of the hash table
and identifies all the polygons that have a particular vertex in common (to within the
fuzz tolerance). The normals of all the participating polygons are averaged together and
stored with the associated vertices.

The test for equality uses a parameter called fuzz, to accomodate floating-point errors
when the model is made. If the Manhattan distance between two vertices doesn’t exceed
fuzz, then they are considered the same.

Note that if we identify (i.e., merge) two vertices that are nearby to be the same
then we might be tempted to use just one piece of storage to hold the vertex and its

62 < Polygons and Polyhedra

normal, rather than replicate that vertex at each polygon. The reason I don’t do this is
to support edge preservation. This is a technique where two adjacent polygons are not
averaged together if they diverge from coplanarity by more than a given criterion. For
example, if a number of polygons all come together at the tip of a narrow cone, then
we probably don’t want to smooth the vertex at the tip, though we want to smooth the
other vertices of the cone. So the vertex at the tip will have a different normal for each
constituent polygon. Edge preservation is disabled by default; you can enable it (and
supply its comparison threshold) with a function call.

Note that as with any hashing scheme, two spatially distinct vertices can hash to the
same table entry, so we may need to pass through each hash-table list multiple times
to pick up each vertex.

The general flow of the algorithm is a pair of small loops in a larger loop. The outer
loop scans all the hash buckets. If the entry is NULL then it moves to the next; if it
is non-NULL then it is processed. Processing starts up a loop that continues as long as
there are any vertices in the list at this entry that are marked as waiting (I simply scan
the list and look for any such vertex). The first vertex found that is waiting is set to
working; this becomes the vertex for which we want to compute a normal. We initialize
a new vertex normal with the normal of the polygon containing this vertex.

We now continue scanning the list. If we find another vertex that is acceptably close
to this one spatially, then we examine it. If edge preservation is disabled, we mark
that vertex also as working and add its polygon’s normal in to the accumulating vertex
normal. If edge preservation is enabled, we check the angle between the new polygon
and the original one and mark it working and add in the new polygon’s normal only if
the angle is sufficiently large.

When we reach the end of the list, we normalize the vertex normal. We then pass
through the list again, searching for nodes with the status working. For each such node,
we copy the vertex normal into the normal pointer for that vertex for that polygon,
and set the node to done.

When we reach the end of the list, we return to scan for any more vertices that are
still waiting. If every node in the list is done, we move on to the next hash-table entry.

O Use <

You supply input to the package by filling up data structures of type Polygon, which
the package augments with vertex normals.

A simple demonstration program is supplied with the code; it makes a mesh of quadri-
Jaterals and triangles and writes them to the standard output with vertex normals. The
main routine initializes the package, inserts polygons, enables edge preservation, builds
normals, saves the polygons, and frees the package’s memory. The mesh is a function
z = y|1—2x| over the unit square; so at y = 0 it’s flat, and at y = 1 it’s a sharp crease. In

o

1.6 Building Vertex Normals from an Unstructured Polygon List {63

the driver I turn on edge preservation with a minimum dot value of 0.0 (corresponding
to 90°), so the crease is smooth up to y = 0.5, when it becomes crisp.

To use the package, call initAl1Tables, which returns a pointer to a data structure
of type Smooth.

To insert polygons, fill in an array of Point3 structures with the vertex locations,
and pass this array, the vertex count, and the smooth pointer to includePolygon. This
routine also allows you to attach a user pointer of arbitrary type to the polygon. I have
found this useful for keeping color and texture information with the polygon.

To enable edge preservation, you can call enableEdgePreservation at any time after
initialization and before computing normals. Pass it the smooth pointer and the value

of the smallest dot product (i.e., the cosine of the largest angle) which you are willing
‘ to call “fat.” If you later want to turn off this option, call disableEdgePreservation.
The fuzz tolerance for comparisons is set by a call to setFuzzFraction.

When all your polygons are in, call makeVertexNormals, passing in the smooth
pointer. The result is that Smooth field polygonTable now points to a copy of your
polygon list, only each polygon now contains its own surface normal (stored in normal)
and an array of normals (stored in normals as an array of Vector3 structures) corre-
sponding to each vertex. The next field points to the next polygon so you can read them
all back by following this link. The polygons are stored in this list in the same order in
which you included them. When you're done with all the polygons, call freeAll with
the pointer to smooth to release the storage used by the system.

You may want to play with the hashing function; I used a very simple one. First I
round each vertex to three digits of precision (this is controlled by the QSIZE constant).
I then scale the three coordinates by three different small primes. You can try any hash
function you like, but it must always return a non-negative value. The size of the hash
table is given by the HASH_TABLE_SIZE constant.

& Discussion <

This algorithm can be sensitive to small variations in the input. For example, if two
adjacent polygons share a vertex, but one stores the X coordinate of that vertex as
3.999999 and the other stores it as 4.0, then the two vertices might fall into different
buckets. This could be fixed by multiple hashing: use two different, overlapping hash-
ing functions, and run through both hash tables for each vertex (being careful not to
duplicate included polygons). '

The algorithm could be improved by making QSIZE also dependent on the overall
bounding box of the model.

Some applications may find it useful to access the internal data structure which con-
tains the inferred topology of the model before returning that memory to the operating
system.

64 < Polygons and Polyhedra

¢ CCode ¢

Header File

/* smooth.h */
/* header file for polygon smoothing */
/* Andrew S. Glassner / Xerox PARC */

#include <stdio.h>
#include <math.h>

#ifdef STANDALONE_TEST
#define NEWTYPE(x) (x *)malloc((unsigned) (sizeof (x)))

typedef struct Point3Struct {
double x, vy, z;
} Point3;
typedef Point3 Vector3;
typedef int boolean;
#define TRUE 1
#define FALSE 0

Vector3 *V3Normalize(Vector3 *v);

Vector3 *V3Add(Vector3 *a, Vector3 *b, Vector3 *c);
double V3Dot {Vector3 *a, Vector3 *b);

#else

#include "GraphicsGems.h"

#endif

fHA% ks xxx MACROS and CONSTANTS ***** %4/

/* new array creator */
#define NEWA (x, num) (x *)malloc{ (unsigned) ((num) * sizeof(x)))

#define MARKWAITING 0
#define MARKWORKING 1
#define MARKDONE 2

/* fuzzy comparison macro */
#define FUZZEQ(x,y) (fabs ((x)-(y))<(smooth->fuzz))

/* hash table size; related to HASH */
#define HASH_TABLE_SIZE 1000

/* quantization increment */

#define QSIZE 1000.0

#define QUANT (x) ((int) ((x)*QSIZE)) /QSIZE)

#define ABSQUANT (x) ((int) ((fabs (x))*QSIZE)) /QSIZE)
\

#define HASH(pt)
int) (((3*ABSQUANT (pt->x)) + \

1.6 Building Vertex Normals from an Unstructured Polygon List $ 65

(5*ABSQUANT (pt->y)) + \
(7*ABSQUANT (pt->z))) * \
HASH_TABLE_SIZE)) % HASH_TABLE_SIZE
/********* STRUCTS AND TYPES *********/

typedef struct Polygonstruct ({

Point3 *yertices; /* polygon vertices */
Vector3 *normals; /* normal at each vertex */
Vector3 normal; /* normal for polygon */
int numverts; /* number of vertices */
void *user; /* user information */
struct Polygonstruct *next;

} Polygon_detf;
typedef Polygon_def *Polygon;

typedef struct HashNodestruct ({

Polygon polygon; /* polygon for this vertex */
int vertexNum; /* which vertex this is */
int marked; /* vertex status */

struct HashNodestruct *next;

} HashNode_def;
typedef HashNode_def *HashNode;

typedef struct SmoothStruct {
HashNode hashTable[HASH_TABLE_SIZE];
Polygon polygonTable;
Polygon polyTail;

double fuzz; /* distance for vertex equality */

double fuzzFraction; /* fraction of model size for fuzz */
boolean edgeTest; /* apply edging test using minDot */

float minDot ; /* if > this, make sharp edge; see above */

} Smooth_def;
typedef Smooth_def *Smooth;

/********* publlc procs ************/

Smooth initAllTables () ;

void includePolygon (int numVerts, Point3 *verts, Smooth smooth, void *user);
void makeVertexNormals (Smooth smooth);

Jrxxxxxxx puplic option contorl procs ***xxxkxxxxiy

void setFuzzFraction (Smooth smooth, float fuzzFraction);
void enableEdgePreservation (Smooth smooth, float minDot) ;
void disableEdgePreservation(Smooth smooth);

Smoothing Code

/* smooth.c - Compute vertex normals for polygons.
Andrew S. Glassner / Xerox PARC

66 < Polygons and Polyhedra

The general idea is to 1) initialize the tables, 2) add polygons one by one,
3) optionally enable edge preservation, 4) optionally set the fuzz factor,
5) compute the normals, 6) do something with the new normals, then 7) free
the new storage. The calls to do this are:

1) smooth = initAllTables(};

2) includePolygon(int numVerts, Point3 *verts, Smooth smooth);

3) (optional) enableEdgePreservation{Smooth smooth, float minDot);
4) (optional) setFuzzFraction(smooth Smooth, float fuzzFraction);
5) makeVertexNormals (smooth) ;

6) YOUR CODE

7} freeSmooth (smooth) ;

Edge preservation ig used to retain sharp creases in the model. If it is
enabled, then the dot product of each pair of polygons sharing a vertex
is computed. If this value is below the value of 'minDot' (that is,

the two polygons are a certain distance away from flatness), then the
polygons are not averaged together for the vertex normal.

If you want to re-compute the results without edge preservation, call
disableEdgePreservation (smooth) ;

The general flow of the algorithm is:
1. currentHash = scan hashTable
2. while (any unmarked) {
3. firstVertex = first unmarked vertex. set to MARKWORKING
4. normal = firstVertex->polygon->normal
5. scan currentHash. If vertex = firstVertex
6. normal += vertex->polygon->normal
7. set vertex to MARKWORKING
(end of scan)
8. set normal to unit length
9. scan currentHash. If vertex set to MARKWORKING
10. set vertex-»normal = normal
11. set to MARKDONE
(end of scan)
(end while)

The HASH macro must always return a non-negative value, even for negative inputs.
The size of the hash table can be adjusted to taste.
The fuzz for comparison needs to be matched to the resolution of the model.

*/

#include "smooth.h"

void addVertexToTable (Point3 *pt, Polygon polygon, int vNum, Smooth smooth);
void makePolyNormal (Polygon polygon) ;

void writeSmooth(FILE *fp, int numPolys);

HashNode getFirstWaitingNode (HashNode node) ;

void processHashNode (HashNode headNode, HashNode firstNode, Smooth smooth);
int hashPolys (boolean phase);

void writeGeom{int numPolys) ;

vold freeSmooth{Smooth smooth) ;

1.6 Building Vertex Normals from an Unstructured Polygon List

boolean compareVerts (Point3 *v0, Point3 *vl, Smooth smooth);
void computeFuzz (Smooth smooth);

J*x%kKkkkxx% ENTRY PROCS FHhEKXXKAK/

/* add this polygon to the tables */

void includePolygon(int numVerts, Point3 *verts, Smooth smooth, vold *user)

int 1i;

Point3 *vp, *ovp;
Polygon polygon = NEWTYPE(Polygon_def);
polygon->next = NULL;

if (smooth-»polyTail != NULL) {
smooth-»polyTail->next = polygon;
} else {

smooth->polygonTable = polygon;
}i
smooth-»>polyTail = polygon;
polygon->vertices = NEWA(struct Point3Struct, numVerts);
polygon->normals = NEWA(struct Point3Struct, numvVerts);
polygon->user = user;
vp = polygon-»vertices;
ovp = verts;
polygon-»numVerts = numVerts;

for (i=0; i<numVerts; 1++) {

Vp->»>X = OVDP->X;
Vp->Y = OVD->Yy;

Vp->Z = OVD->Z;

addvertexToTable (vp, polygon, i, smooth);
Vp++;

OVp++;

b
makePolyNormal (polygon) ;
}

void enableEdgePreservation (Smooth smooth, float minDot) {
smooth->edgeTest = TRUE;
smooth->minDot = minDot;

}

void disableEdgePreservation(Smooth smooth) {
smooth->edgeTest = FALSE;

}

void setFuzzFraction (Smooth smooth, float fuzzFraction) {
smooth->fuzzFraction = fuzzFraction;

}

J*k*k*k** k% PROCEDURES ******x%x/

/* set all the hash-table linked lists to NULL */
Smooth initAllTables () {
int 1i;

o 67

68 < Polygons and Polyhedra

Smooth smooth = NEWTYPE (Smooth_def);
for (i=0; i<HASH_TABLE_SIZE; i++) smooth->hashTable[i] = NULL;
smooth->polygonTable = NULL;
smooth->polyTail = NULL;
smooth->edgeTest = FALSE;:
smooth->minDot = 0.2;
smooth->fuzzFraction = 0.001;
smooth->fuzz = 0.001;
return (smooth) ;

}

/* hash this vertex and add it into the linked list */
void addvVertexToTable (Point3 *pt, Polygon polygon, int vNum, Smooth smooth) {
int hash = HASH(pt):
HashNode newNode = NEWTYPE (HashNode_def) ;
newNode->next = smooth->hashTable[hash];
smooth->hashTable[hash] = newNode;
newNode->polygon = polygon;
newNode->vertexNum = vNum;
newNode->marked = MARKWAITING;
}

/* compute the normal for this polygon using Newell's method */

/* (see Tampieri, Gems III, p. 517) */

vold makePolyNormal (Polygon polygon) {

Point3 *vp, *p0, *pl;

int i;
polygon->normal.x = 0.0; polygon-»normal.y = 0.0; polygon->normal.z = 0.0;
vp = polygon->vertices;
for (i=0; i<polygon->numvVerts; i++) {

p0 = vp++;
pl = vp;
if (i == polygon->numverts-1) pl = polygon-svertices;

polygon->normal.x += (pl-»y - p0->y) * (pl->z + pO->z);
polygon->normal.y += (pl->z - pO0->z) * (pl->x + p0->x);
polygon->normal.z += (pl->x - pO0->x) * (pl->y + p0->y);
b

(void) V3Normalize (& (polygon->normal));

}

/* scan each list at each hash table entry until all nodes are marked */
void makeVertexNormals (Smooth smooth) {
HashNode currentHashNode:
HashNode firstNode;
int i;
computeFuzz (smooth) ;
for (i=0; 1<HASH_TABLE_SIZE; i++) {
currentHashNode = smooth->hashTable{i];
do {
firstNode = getFirstWaitingNode (currentHashNode) ;
if (firstNode != NULL) {
processHashNode (currentHashNode, firstNode, smooth);
}s

}.

1.6 Building Vertex Normals from an Unstructured Polygon List

} while (firstNode != NULL);

7

void computeFuzz{Smooth smooth) {
Point3 min, max;
double od, d;

Point3 *v;

int i;

Polygon poly = smooth->polygonTable;
min.x = max.x = poly->vertices->Xx;
min.y = max.y = poly->»vertices->y;
min.z max.z = poly->vertices->z;
while {(poly != NULL) {

(
v = poly->vertices;
(

"

for (i=0; i<poly->numVerts; i++) {
if (v->X < min.xX) min.x = v->X;
if (v->y < min.y) min.y = v->Y;
if (v-»>z < min.z) min.z = v->z;
if (v->x > max.xX) max.xXx = V->X;
if (v-»y » max.y) max.y = v->Y;
if (v->z > max.z) max.z = V->z;
V++;
by
poly = poly->next;
}i
d = fabs{max.x - min.x);
od = fabs(max.y - min.y); 1if (od > d) d
od = fabs(max.z - min.z); 1if (od > d) d
smooth->fuzz = od * smooth->fuzzFraction;

}

od;
od;

/* get first node in this list that isn't marked as done */
HashNode getFirstWaitingNode (HashNode node)

while (node != NULL) {
if (node->marked !=
node = node->next;
Y

return (NULL) ;

}

/* are these two vertices the same to with the tolerance?

boolean compareVerts (Point3
float g0, gil;
g0 = QUANT(vO0->x); gl =
g0 = QUANT(vO->y); gl =
g0 = QUANT(v0->z); gl =
return (TRUE) ;
}

{

MARKDONE) return (node);

*v(Q, Point3 *vl,

QUANT (v1->x);
QUANT (v1->y);
QUANT (v1->2z) ;

if
if
if

*/

Smooth smooth) {

('FUZZEQ (q0,
(1FUZZEQ(QO,
({FUZZEQ (g0,

/* compute the normal for an unmarked vertex */
void processHashNode (HashNode headNode, HashNode firstNode, Smooth smooth) {
HashNode scanNode = firstNode->next;

ql)
ql)
ql)

)
)
)

return (FALSE) ;
return (FALSE) ;
return (FALSE) ;

$ 69

70 < Polygons and Polyhedra

Point3 *firstVert = &{(firstNode-»polygon->vertices{firstNode-»vertexNum]);
Point3 *headNorm = & (firstNode->polygon->normal) ;

Point3 *testVert, *testNorm;

Point3 normal;

float ndot;

firstNode->marked = MARKWORKING;

normal.x = firstNode-»>polygon->normal.x;
normal.y = firstNode->polygon->normal.y;
normal.z = firstNode-»polygon-»normal.z;
while (scanNode != NULL) {

testVert = & (scanNode-»polygon-»vertices(scanNode->vertexNum]) ;
if (compareVertg(testVert, firstvert, smooth)) {

testNorm = & {scanNode->polygon-»>normal) ;

ndot = V3Dot (testNorm, headNorm) ;

if ((!(smooth->edgeTest)) || (ndot > smooth->minDot)) ({
V3Add (&normal, testNorm, &normal);
scanNode->marked = MARKWORKING;
Y
};
scanNode = scanNode->next;

}i
V3Normalize (&normal) ;

scanNode = firstNode;
while (scanNode != NULL) {
if (scanNode->marked == MARKWORKING) {
testNorm = & (scanNode->polygon->normals|[scanNode->vertexNum]) ;
testNorm->x = normal.x;
testNorm->y = normal.y;
testNorm-»>z = normal.z;
scanNode->marked = MARKDONE;
testVert = &(scanNode-»polygon-s>vertices|[scanNode->vertexNum]) ;
}i
scanNode = scanNode->next;

}i

/* free up all the memory */
void freeSmooth (Smooth smooth) {
HashNode headNode;
HashNode nextNode;
Polygon poly;
Polygon nextPoly;
int i;
for (i=0; 1i<HASH_TABLE_SIZE; i++) {
headNode = smooth->hashTable([i];
while (headNode != NULL) {
nextNode = headNode-»next;
free(headNode) ;

1.6 Building Vertex Normals from an Unstructured Polygon List & 71

headNode = nextNode;
Y
}i
poly = smooth->polygonTable;
while (poly != NULL) {
nextPoly = poly->next;
freePoly (poly);
poly = nextPoly;
}:
smooth->polygonTable = NULL;
free(smooth);

}

freePoly (polygon) Polygon polygon; {
if (polygon-s>vertices != NULL) free(polygon->vertices);
if (polygon->normals != NULL) free(polygon-»>normals);
polygon->next = NULL;
free(polygon);
}

Sample Driver

/* test.c - sample driver for polygon smoother */
/* makes a mesh height field of quadrilaterals and triangles */
/* Andrew S. Glassner / Xerox PARC */

#include "smooth.h"

#ifdef STANDALONE_TEST
/* from Graphics Gems library ; for standalone compile */

/* normalizes the input vector and returns it */
Vector3 *V3Normalize(Vector3 *v) {
double len = sqrt(V3Dot (v, v));

if {len != 0.0) { v-»x /= len; v-»y /= len; v-»z /= len; }
return(v) ;
}

/* return vector sum ¢ = a+b */

Vector3 *V3add (Vector3 *a, Vector3 *b, Vector3 *c) {
Cc->X = a->x+b->x; C->y = a->y+b->y; C->z = a->z+b->z;
return(c);

}

/* return the dot product of vectors a and b */
double V3Dot (Vector3 *a, Vector3 *b) ({
return((a->x*b->x)+ (a->y*b->y)+{(a->z*b->2)) ;
}
#endif

72 < Polygons and Polyhedra

/* make a square height field of guadrilaterals and triangles */

main{int ac, char *av[]) {
int xres, yres;
Smooth smooth;

if (ac < 3) { printf{"use: test x y\n");

xreg = atol(*++av);

yres = atoi(*++av);

smooth = initAllTables(); /*
buildMesh (smooth, xres, yres); /*
enableEdgePreservation(smooth, 0.0); /*
makeVertexNormals (smooth) ; /*
savePolys (smooth) ; /*
freeSmooth (smooth) ; /*

}

/* z=f(x,y) */
double fofxy(double x, double y) {
double h;

h=2.0* (0.5 - x); 1if (h < 0) h = -h;
return(h);
}

exit(-1); }; /* abrupt, I know */

initialize */

build the mesh (calls includePolygon) */

90 degree folds or more stay crisp */
build the normals */

save the result in a file */

take only normals, leave only footprints */

h=h™*y;

buildMesh (Smooth smooth, int xres, int yres) {

int x, y:
Point3 *vlist;
double dx, dy, lx, ly, hx, hy:
vlist = NEWA (struct Point3Struct, 4};
dx = 1.0/ ((double) (xres));
dy = 1.0/ ((double) (yres));
for (y=0; y<yres; y++) {
ly =y * dy;
hy = (y+1) * dy;
for (x=0; x<xres; x++) {
Ix = x * dx;
hx = (x+1) * dx;
if ((x+y)%2 == 0) addTriangles(lx,

ly, hx, hy, vlist, smooth);

else addQuadrilateral (1x, ly, hx, hy, vlist, smooth);

};
Y
free(vlist);

}

addTriangles (double 1x, double ly, double hx, double hy,

Point3 *vlist, Smooth smooth)
Point3 *p = vlist;
/* make the first triangle */

p->x = 1x; p->y =
p->x = hx; p-»y = ly:
p->x = 1x; p->y = hy;

includePolygon (3, vlist, smooth, NULL);
/* make the other triangle */
p = viist;

p->x = hx; p-»>y = ly;

{

ly; p->z = fofxy(p->x, D->Y); DP++;
p->z = fofxy(p->x, p->y); p++;
p->z = fofxy(p->x, p->y)i D++;

/* add the polygon */

p->z = fofxy(p->x, pP->Y)i pP++;

1.6 Building Vertex Normals from an Unstructured Polygon List {73

p->x = hx; p->y = hy; p-»z = fofxy(p->x, p->y); p++:

p->x = 1x; p-»>y = hy; p->z = fofxy(p->x, p->Y); p++;
includePolygon (3, vlist, smooth, NULL); /* add the polygon */
}

addQuadrilateral {(double 1x, double ly, double hx, double hy,
Point3 *vlist, Smooth smooth) {
Point3 *p = vlist;

p->x = 1x; p->y = ly; p->z = fofxy(p->x, p->y); p++;
p->x = hx; p->y = ly; p-»z = fofxy(p->x, p->Y); D++;
p->x = hx; p->y = hy; p->z = fofxy(p-»>%, D->Y); DP++;
p->x = 1x; p->y = hy; p->z = fofxy(p->x, p->y)i Dp++;
includePolygon {4, vlist, smooth, NULL); /* add the polygon */
}
savePolys (Smooth smooth) {
Polygon poly = smooth->polygonTable;
int i, k;
Point3 *v, *n;
printf ("NQUAD\n") ; /* header for point/normal format */
while (poly != NULL) {
for (1=0; i<4; 1i++) {
k = 1; /* we always write 4 points so double 3rd triangle vertex */

if (i »>= poly->numVerts) k = poly->numvVerts-1;
v = &({poly-»verticeslk]);
n = &(poly->normals(k]);
printf("$f %f %f %f %f %f\n", v->x, v->y, v->2, Nn->X, n->y, Nn->z);
}i
printf("\n");
poly = poly->next;
1

¢ Bibliography ¢

(Foley et al. 1990) James Foley, Andries van Dam, Steven Feiner, and John Hughes.
Computer Graphics Principles and Practice, second edition. Addison-Wesley,
Reading, 1990.

(Glassner 1990) Andrew S. Glassner. Computing surface normals for 3d models. In An-
drew S. Glassner, editor, Graphics Gems, chapter 10.12. Academic Press, Boston,
1990.

(Sutherland et al. 1974) 1. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A char-
acterization of ten hidden-surface algorithms. AMC Computing Surveys, 6(1):1 55,
1974.

(Tampieri 1992) Filippo Tampieri. Newell’s method for computing the plane equation
of a polygon. In David Kirk, editor, Graphics Gems III, chapter V.5. Academic
Press, Boston, 1992.

.7

Detecting Intersection of a
Rectangular Solid and a Convex
Polyhedron

Ned Greene

Apple Computer and University of California at Santa Cruz
One Infinite Loop, MS 301-3J

Cupertino, CA 95014

greene @apple.com

This Gem presents a fast method for determining whether a rectangular solid intersects
a convex polyhedron. Our algorithm is based on the observation that a rectangular solid
R intersects a convex polyhedron P if and only if (a) the projections of R and P intersect
in all three axis-aligned orthographic views (i.e., front, side, and top views), and (b) R
does not lie entirely “outside” the plane of any face of P. After finding the equations
of certain lines and planes associated with P, we can determine whether these criteria
are satisfied by simply evaluating inequalities. The method is well suited to culling
a geometric model organized in an octree to a viewing frustum. For this application,
determining whether a bounding box intersects a viewing frustum requires evaluating
between one and thirty inequalities. The method can also be applied to detecting the
intersection of a rectangular solid and a 3D planar polygon.

¢ Introduction <

Beginning with some definitions, we will refer to a convex polyhedron simply as a poly-
hedron and to an axis-aligned rectangular solid simply as a box. The term “bounding
box” will specifically refer to a “tight,” axis-aligned rectangle in 2D or rectangular
solid in 3D. Axis-aligned orthographic views, the familiar front, side, and top views of
engineering drawings, will be referred to simply as orthographic views.

Various computer graphics techniques associate bounding boxes in the shape of rect-
angular solids with clusters of geometric primitives to enhance efficiency, the idea being
that performing a single operation on a bounding box often eliminates the need to
process primitives inside the box individually. When culling a geometric model to a
viewing frustum, for example, if a bounding box lies outside the frustum, the primitives
it contains also lie outside and need not be considered individually. This observation
underlies simple, fast procedures for culling models represented in spatial hierarchies.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

Macintosh ISBN 0-12-336156-7 74

ol

1.7 Detecting Intersection of a Rectangular Solid and a Convex Polyhedron { 75

For example, if geometric primitives are organized in an octree of bounding boxes, parts
of the model which lie entirely outside a viewing frustum can be efficiently culled by
testing for box-frustum intersection during recursive subdivision of the octree (Garlick
et al. 1990).

Since box-polyhedron intersection tests may be performed hundreds or thousands
of times in the course of producing a single image of a scene, devising an efficient
intersection algorithm is worthwhile. One intuitive approach to the problem combines
a test for intersecting bounding boxes, tests to see if a vertex of one solid lies inside the
other, and tests to see if an edge of one solid intersects a face of the other. While this
method is very straightforward, the expense of finding geometric intersections makes
it quite costly. Alternatively, we could employ algorithms for detecting intersection
of convex polyhedra that are described in the computational geometry literature, for
example, the method of Chazelle and Dobkin (Chazelle and Dobkin 1987). However,
such methods are typically complicated, designed with asymptotic performance in mind,
and poorly suited to simple problems like deciding whether a box intersects a viewing
frustum.

Our approach is both simple and efficient. It does not require finding geometric in-
tersections, but rather, after finding the equations of certain lines and planes associated
with a polyhedron, box-polyhedron intersection can be determined by simply compar-
ing bounding boxes and evaluating inequalities. The algorithm performs most efficiently
when comparing numerous bounding boxes to the same polyhedron, but even when per-
forming a single intersection test, efliciency compares favorably to other methods.

We precede our analysis of box-polyhedron intersection with a discussion of primitive
operations that our algorithm performs — determining whether a box intersects a plane,
whether a rectangle intersects a line, and whether a rectangle intersects a polygon.

¢ Box-Plane and Rectangle-Line Intersection <

One of the fundamental operations performed by our box-polyhedron intersection al-
gorithm is determining whether a box intersects a plane, and if not, which side of the
plane the box lies on. The problem is illustrated in Figure 1, an orthographic projec-
tion in which the viewpoint has been chosen so that plane P is perpendicular to the
screen. Vector N is normal to P, pointing into P’s positive half-space.! Box Bl lies in
P’s negative half-space, box B2 lies in P’s positive half-space, and box B3 intersects P.
These are the three cases that we wish to distinguish in general.

The first step in distinguishing these cases is to establish which of a box’s vertices lies
farthest in the “positive direction” (the direction of normal N), call this the p-vertexz,

'Recall that a plane defined by equation Ax+By+Cz+D=0 has normal (A,B,C) and divides space
into a positive half-space satisfying the equation Ax+By+Cz+D>0 and a negative half-space satisfying
the equation Ax+By+Cz+D<0.

76 < Polygons and Polyhedra

plane P

n (seen edge-on)

Figure 1.

and which of the box’s vertices lies farthest in the “negative direction,” call this the
n-vertex. P- and n-vertices are easily identified, since the p-vertex corresponds to the
octant of the plane’s normal, and the n-vertex lies at the opposite corner. When an
edge or face of the box is parallel to the plane, the octant rule does not specify a unique
vertex, but in these cases it doesn’t matter which of the obvious candidates is selected.
In Figure 1 p-vertices are labeled p and n-vertices are labeled n. Note that the p- and
n-vertices associated with a particular plane have the same relative positions on all
axis-aligned bounding boxes, so they need to be identified only once.

Once p- and n-vertices have been identified, distinguishing the three cases of box-
plane intersection is very simple. Box B lies entirely in plane P’s negative half-space
if and only if its p-vertex lies in P’s negative half-space, B lies entirely in P’s positive
half-space if and only if its n-vertex lies in P’s positive half-space, and if neither of
these relationships holds, B intersects P (Haines and Wallace 1991). It follows that we
can determine whether a box lies in a particular half-space by evaluating one plane
equation, and that the three cases of box-plane intersection can be distinguished by
evaluating one or two plane equations as follows:

Given an axis-aligned rectangular solid R with n-vertex (xn,yn,zn) and
p-vertex (xp,yp.zp), and plane P with equation Ax+By+Cz+D=0,

if (A*xp + B*yp + C*zp + D < 0) { R lies entirely in P's negative half-space }
else if (A*xn + B*yn + C*zn + D > 0) { R lies entirely in P's positive half-space }
else{ R intersects P }

The two-dimensional problem of determining whether an axis-aligned rectangle in-
tersects a line, lies entirely in the line’s negative half-plane, or lies entirely in the line’s

1.7 Detecting Intersection of a Rectangular Solid and a Convex Polyhedron {77

positive half-plane is entirely analogous, requiring the evaluation of one or two line
equations.

Given an axis-aligned rectangle R with n-vertex (xn,yn) and p-vertex (Xp,yp),
and line L with equation Ax+By+C=0,

if (A*xp + B*yp + C < 0) { R lies entirely in L's negative half-plane }
else if (A*xn + B*yn + C > 0) { R lies entirely in L's positive half-plane }
else{ R intersects L }

¢ Rectangle-Polygon Intersection <

We now consider another subproblem, determining whether an axis-aligned rectangle
R and a convex polygon P, both lying in the same plane, intersect. It can easily be
shown that R intersects P if and only if (a) R intersects P’s bounding box and (b) R
does not lie entirely “outside”? any of the infinite lines defined by P’s edges, which we
will refer to as edge-lines. The problem is illustrated in Figure 2 where P’s bounding
box B is drawn in dashed lines and P’s edge-lines are drawn in dotted lines (e.g., E).
Applying the intersection criteria to rectangles R1, R2, and R3 of Figure 2, R1 is found
not to intersect P because it does not intersect P’s bounding box, R2 is found not to
intersect P because it lies outside of edge-line E, and R3 is found to intersect P because
it satisfies both intersection criteria.

The rectangle-line intersection method described in the preceding section is an ef-
ficient way to evaluate criterion (b). Using this method we can determine whether a
rectangle lies outside an edge-line by substituting the coordinates of the rectangle’s n-
vertex into the edge-line’s equation. For example, to show that R2 lies outside edge-line
E we would substitute the coordinates of R2’s lower left vertex (the n-vertex for E) into
the line equation for E.

The rectangle-polygon intersection problem is germane because our algorithm looks
for box-polyhedron intersection in orthographic views, and in these views a box always
projects to an axis-aligned rectangle and the silhouette of a convex polyhedron is always
a convex polygon. These conditions apply, for example, in Figure 3 where the panels
labeled “front,” “side,” and “top” are orthographic views of a box and a polyhedron in
the shape of a viewing frustum. Once the polygonal silhouette of the polyhedron has
been identified in an orthographic view,* determining whether box-polyhedron intersec-
tion occurs in that view reduces to the rectangle-polygon intersection problem described
above. Incidentally, Figure 3 illustrates that intersection of a box and a polyhedron in

2By “outside” we mean on the side opposite polygon P.

SRemember that azis-aligned is implied in this term.

‘Finding a convex polyhedron’s silhouette edges is particularly straightforward in an orthographic
view. In a view down an axis, call it the u-axis, if the u components of the outward-pointing normals
of two adjacent faces have opposite signs, their common edge is a silhouette edge.

78 < Polygons and Polyhedra

Figure 2. Testing for intersection between a polygon P and various rectangles R;.

all three orthographic views does not guarantee intersection in 3D, as is apparent in
the upper right panel.

It follows from the rules for rectangle-polygon intersection that the projections of a
box B and a polyhedron P intersect in all three orthographic views if and only if (1)B
intersects P’s bounding box and (2) the projection of B does not lie outside any of the
edge-lines of P’s silhouette in any of the three orthographic views. Our box-polyhedron
intersection algorithm uses this formulation to establish intersection in orthographic
views, as elaborated in the following section.

& Box-Polyhedron Intersection <

Our box-polyhedron intersection algorithm is based on the observation that for any two
convex polyhedra A and B which do not intersect, there exists a separating plane lying
between them that is (1) parallel to a face of A, (2) parallel to a face of B, or (3) parallel
to an edge of A and an edge of B.%

Applying this observation to a rectangular solid R and a convex polyhedron P, we
will say that a separating plane which is parallel to a face of R is of type I, a separating
plane which is parallel to a face of P is of type 2, and a separating plane which is parallel
to an edge of R and an edge of P is of type 3. If a separating plane of type 1, 2, or 3
exists, R and P do not intersect; otherwise they do.

5My thanks to an anonymous reviewer for pointing this out and suggesting the ensuing line of
exposition. As a starting point for a proof, consider two non-interpenetrating convex polyhedra whose
surfaces are in contact, e.g., a vertex touches a face, an edge touches an edge, an edge touches a face,
etc. For any possible configuration, a plane of type 1, 2, or 3 separates the polyhedra except for the
point, line segment, or polygon of contact.

1.7 Detecting Intersection of a Rectangular Solid and a Convex Polyhedron 79

top

front side

Figure 3. Four views of a rectangular solid and a polyhedron in the shape of a viewing frustum. The
front, side, and top views are axis-aligned orthographic views.

We can easily see whether a type 1 plane exists by determining whether P’s bounding
box intersects R. If so, a type 1 plane does not exist; if not, a type 1 plane does exist,
demonstrating that R and P do not intersect, and we are done.

We can see whether a type 2 plane exists by comparing each face-plane of P with the
corresponding n-vertex of R using the method presented in the section on box-plane
intersection. If any of these n-vertices is outside of its respective face-plane, there exists
a type 2 separating plane demonstrating that R and P do not intersect and we are done.

The remaining problem is to determine whether a separating plane of type 3 exists.
Since a type 3 plane is parallel to an edge of R, it projects to a “separating line” lying
between the projections of R and P in one of the orthographic views. It follows that
a type 3 plane exists if and only if the projections of R and P do not intersect in at
least one of the three orthographic views. Combining this observation with intersection
criterion (2) from the preceding section, the existence of a type 3 plane can be decided
by determining whether the projection of R lies outside an edge-line of P in at least
one orthographic view.® If so, a type 3 plane exists, establishing that R and P do not
intersect; if not, a type 3 plane does not exist and we conclude that R and P intersect
because no type 1, 2, or 3 separating plane exists.

5Note that we have already established that R intersects P’s bounding box, satisfying intersection
criterion (1) from the preceding section.

80 ¢ Polygons and Polyhedra

Incidentally, the conditions for box-polyhedron intersection can be stated very con-
cisely as follows: Box R intersects polyhedron P if and only if (a) the projections of R
and P intersect in all three orthographic views, and (b) R does not lie entirely outside
the plane of any face of P. In this formulation the requirement that R intersects P’s
bounding box is subsumed by condition (a). The analogous intersection conditions for
a box R and a 3D planar polygon P are as follows: R and P intersect if and only if the
projections of R and P intersect in all three orthographic views and R intersects the
plane of P.

¢ Summary of the Algorithm ¢

Let’s reiterate the algorithm as it is applied in practice with efficient execution in mind.
Assuming for the moment that polyhedron P will be compared to numerous boxes,
we begin with the following preliminary steps: 1) for each face of P we find the plane
equation and identify which box corner is the n-vertex; 2) for each silhouette edge of P
in the three orthographic views we find the line equation and identify which box corner
is the n-vertex;” and 3) we find P’s bounding box. If P will be compared to only a small
number of boxes, lazy evaluation of this information may be more eflicient.

Now box-polyhedron intersection testing proceeds as follows. If box R does not in-
tersect P’s bounding box, we conclude that R does not intersect P and we are done.
Next we consider P’s face-planes one by one, seeing if R lies entirely outside any of
these planes. If so, we conclude that R does not intersect P and we are done. Finally,
we consider P’s edge-lines® one by one, seeing if R’s projection lies entirely outside any
of these lines in the appropriate orthographic view. If so, we conclude that R does not
intersect P and we are done. Otherwise, it has been established that intersection does
occur.

To estimate the computational expense of the algorithm we examine the cost of the
primitive operations. We can determine whether two 3D bounding boxes intersect by
evaluating between one and six simple inequalities of the form “is a < b?” Determining
whether a box lies entirely outside a face-plane requires evaluating one plane equa-
tion. Determining whether a box’s projection lies entirely outside an edge-line requires
evaluating one line equation. So when comparing a box to a polyhedron with F faces
and E silhouette edges in orthographic views, each box-polyhedron intersection test
requires evaluating between one and six simple inequalities, evaluating between zero
and F plane equations, and evaluating between zero and E line equations. Summing
up, between 1 and 6 + E + F inequalities must be evaluated to show that B and P do
not intersect, and all 6 + E + F inequalities must be evaluated to show that B and

"Pick either of the two vertices which coincide in the orthographic view.
81.¢., the lines defined by P’s silhouette edges in the three orthographic views.

1.7 Detecting Intersection of a Rectangular Solid and a Convex Polyhedron {81

P do intersect. For a viewing frustum, E is at most 18 and F is 6, so the maximum
number of inequalities which must be evaluated to decide box-frustum intersection is
30. Our cost estimate should also amortize the cost of finding line and plane equations
and identifying n-vertices over the number of intersection tests performed.

There are many variations on this basic algorithm. To avoid evaluating all 6 + E + F
inequalities whenever intersection occurs, a test can be added to see if the polyhedron
lies entirely inside the box or vice versa. When culling geometry to a viewing frustum
it may be useful to know which of the frustum’s face-planes a box intersects, because
they correspond to clipping planes. These refinements are included in the procedure
outlined in the following section which we use to cull an octree to a viewing frustum.

& Pseudocode ¢

Given a collection of axis-aligned rectangular solids and a convex polyhedron P, the
following procedure classifies each rectangular solid R as entirely outside, entirely inside,
or partially inside P, and in the latter case reports which face-planes of P are intersected
by R. The procedure can be streamlined for applications which only need to detect
intersection.

/* Routine for Detecting Box-Polyhedron Intersection */

/* Preliminary Step */
Determine P's bounding box.
Find the plane equation of each face of P (these are face-planes) .
Determine which vertex of an axis-aligned rectangular solid is the "n-vertex"
and which is the "p-vertex" for each face-plane of P.
Determine the silhouette edges of P's projection in the three orthographic
views, and find the line equation of each of these edges (these are edge-lines) .
Determine which vertex of an axis-aligned rectangular solid is the "n-vertex"
for each edge-line of P.

For each rectangular solid R {
/* Bounding Box Tests */
if R does not intersect P's bounding box, R is entirely outside P, done with R
if P's bounding box is entirely inside R, R is partially inside P and R
intersects all face-planes, done with R

/* Face-Plane Tests */

for each face-plane F
if R is entirely outside F, R is entirely outside P, done with R
if R is entirely inside F, set a flag indicating that R does not intersect F
else R intersects F, set a flag indicating that R intersects F

}

if R was entirely inside all face-planes, R is entirely inside P, done with R

82 < Polygons and Polyhedra

/* Edge-Line Tests */
for each edge-line E
if the projection of R is entirely outside E (in the appropriate
orthographic projection), R is entirely outside P, done with R

R is partially inside P and it is known which face-planes R intersects

}

¢ Bibliography ¢

(Chagzelle and Dobkin 1987) B. Chazelle and D. Dobkin. Intersection of convex objects 1
in two and three dimensions. Journal of the ACM, 34(1):1-27, Jan. 1987.

(Garlick et al. 1990) B. Garlick, D. Baum, and J. Winget. Interactive viewing of large
geometric data bases using multiprocessor graphics workstations. Siggraph 90, |
Course Notes, Vol. 28 (Parallel Algorithms and Architectures for 3D Image Gen-
eration), pp. 239-245.

(Haines and Wallace 1991) E. Haines and J. Wallace. Shaft culling for efficient ray-
tracgd radiosity. SIGGRAPH ’91, Course Notes, Vol. 12 (Frontiers in Rendering),
pp. 2.1-2.28.

1.8

Fast Collision Detection of
Moving Convex Polyhedra

Rich Rabbitz

Martin Marietta, 138-202
Moorestown, NJ 08057
rrabbitz%pgn138fs @ serling.motown.ge.com

¢ Introduction <

Traditional animation systems do not consider the possibility of two objects colliding.
Two objects crossing the same path are simply allowed to move through each other,
creating an unrealistic effect. A more realistic approach would be to detect when two
objects collide and apply the laws of physics to compute an impulse. As a minimum
capability, an animation system should allow the animator to visualize when two objects
collide. This would allow the empirical simulation of an impulse.

This Gem combines ideas from (Baraff 1990) and (Gilbert et al. 1988) to form an
efficient algorithm for collision detection in an environment where the basic modeling
primitives are represented as convex polyhedra. The main collision detection algorithm
calls a distance algorithm that can be tailored to compute efficiently the minimum
distance between two convex polyhedra in R3, or between two convex polygons in R
C code is provided. Readers not interested in a summary of the algorithm can skip
straight to the code.

¢ Background <

This section reviews some necessary equations and definitions from convex analysis. For
completeness a brief summary is given of the results presented in (Gilbert et al. 1988)
and (Rockafellar 1970), where more detailed discussions can be obtained.

All geometry will be defined in Euclidean space. The inner product of points W, Q) €
R™ is denoted by (W, Q) = 3" ; w;g;. The Euclidean norm is denoted |W|| = /(W, W).
An object can be represented by the space it occupies with a compact set S C R™. Then,
the minimum distance between two objects is defined by

d(S1,S2) =min|[W - Q|, Web5, Q€ (1)

In R™ a set of points S is convex if any two points W, @ € S form a line segment
that is entirely contained in S. It is a closed convex set if it is finitely bounded. For our

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

83 Macintosh ISBN 0-12-336156-7

84 < Polygons and Polyhedra

purposes all convex sets are assumed to be closed. The affine and convex hulls of a set
of points S € R™ are defined by

aff(S) = {Z AiQi, where d A\ =1, Qi €S, X\e R} (2)
i=1 i=1

conv(S) = {Z AiQi, where Y Xi=1, XA >0, Q€S A€ R} (3)
=1 =1

In R" a point W is linearly dependent on a set of points S = {Q1,...,Qm} if there
exist some real scalar numbers Ai,..., Ay, such that W = \Q1 + -+ + A, Qm. If we
impose the additional condition that A; +-- -+ A, = 1, then W is affinely dependent on
S. If we add the constraint that all A; > 0, then W is convexly dependent on S. A set
of points S = {Q1,...,Qm} is affinely independent if no single point @Q; of S is affinely
dependent on all the other members of S. If V' is a finite set of points, the convex hull
of V is called a convex polytope. For the sake of brevity, when we refer to polytope,
it implies convex polytope.

In R™ a hyperplane H is defined by {Q € R™ : (Q, A) = 3}, where A # 0 is normal to
H. H is an affine subspace of R" of dimension n — 1. H divides R" into two half-spaces.
These half-spaces can be open or closed. The two closed half-spaces corresponding to
H are defined as H— = {Q € R" : (Q,A) < 8}, and H+ = {Q € R" : (Q,A) > [5}.

If S is a compact convex set, SN H # ©, and S is contained in one of the closed
half-spaces determined by H, then H is a supporting hyperplane of S. The supporting
function Hg : R™ — R of S is defined by

Hs(A) =max{{Q,A): Q€ S}, AeR" (4)

We denote the contact function Cs(A) : R — S as a solution to (4) where Cs(A)
satisfies

Hs(A) = (Cs(A),A), Cs(A)esS (4)

for all A in R™. Cs(A) defines a point farthest in S in the direction of A. If {Q1,...,Qr},
where Q; € V is a finite set of points in R"™ the support and contact functions for the
conv(V') are similarly defined by

Heonv(vy(A) = max{(Q;,A), i=1,... ,7}, A€eR" (6)
and
Cconv(v)(A) = Qj7 Jj= min{i (A, Qz> = HCOHV(V)(A)v 1<i<r} (7)

A result of Equations (4), (5), (6), and (7) is that compact convex sets and polytopes
can be described in terms of their support properties. This result is particularly useful

1.8 Fast Collision Detection of Moving Convex Polyhedra < 85

when dealing with functions such as the sum or difference of two sets. For example, we
can describe the set difference S = S; — S5 in terms of its support and contact functions
by

Hs = Hg,(A) + Hs,(—A) (8)
Cs = Cs,(A) — Cs,(—A) 9)

Let S; and S, be non-empty sets in R". Then S; and S are said to be separated
if there exists a hyperplane H such that S; and Sy belong to opposing half-spaces. If
we add the constraint that S; and S are not both contained in H, then S; and S; are
properly separated. If S3, S; € R™ are convex sets, it can be shown that the necessary
and sufficient condition for the existence of a hyperplane separating S3 and S4 properly
is that they have no common points. See (Rockafellar 1970) for proof. Therefore, from
(1) we can make the observation that if the minimum distance between S3 and Sy is not
0, then a hyperplane exists that properly separates S3 and Sy. Since one of the convex
sets can be contained in H, this implies that S3 and Ss can be properly separated by
H, where H is a support hyperplane of one of the sets as defined in (4).

Basic 3D modeling primitives such as spheres, boxes, cylinders, cones, etc., can all
be approximated by simple convex polyhedra. These basic primitives can be combined
to create more complex objects. A polyhedron PH consists of a set of vertices V' C R3
and a set of simple planar polygons (faces) F. The planes of the faces divide R3 into
two disjoint sets: the polyhedron interior and its exterior. Each vertex is represented
by an zyz cartesian coordinate. Each face is represented by a directed graph G(V, E),
where V is the set of vertices defined above and E is a set of edges tracing out the face.
Each edge E of a polyhedron is a member of exactly two faces. It is convex if its interior
is a convex set. It is simple if no pair of non-adjacent faces shares a vertex and no two
faces have exactly the same vertex set. In all further references to polyhedra it will be
assumed that they are simple and convex.

¢ Problem <

Given a pair of polyhedra PH; and PHy with m; and mg vertices and transformation
matrices M; and Ma, respectively, detect if PH;, and PH3 collide as M and My vary
over time.

The goal of a collision detection algorithm is to quickly determine if two polyhedra
intersect. If they do intersect it is not necessary to compute the intersection. All we need
is a yes or no answer to the intersection question. This question must be answered re-
peatedly as My and Mj vary over time. Therefore, we want to exploit spatial coherence
when we can to solve a series of collision detection problems efficiently. It is important
to incorporate these concepts into the design of the collision detection algorithm.

86 < Polygons and Polyhedra

¢ Main Algorithm <

If PH, and PH, are a pair of polyhedra in R?, we know that if they have no points in
common then a plane exists that separates them properly. Therefore, we can answer the
question of whether PH, and P Hy intersect by determining if there exists a plane that
separates PH; and PH, properly. If such a plane exists, PH; and PH> are disjoint;
otherwise they intersect.

Now that we know how to answer the intersection question at time ;, we want to
use information from this solution to speed up the computation at time ¢;,1. The way
we do this is by caching witnesses from one time step to another (Baraff 1990). In this
Gem the witness is the plane H, which properly separates PH; and PHy at time ;.

Suppose at time t; PH; and PHs are properly separated by the plane H. Let H also
be a supporting plane of the polyhedron with the maximum number of vertices, say
PH,. Then we can say H is a witness to PH; and PHj being properly separated at
time ¢;. In most animations the spatial relationship between a pair of polyhedra remains
relatively the same during a time step. Using this fact we can cache the separation
witness from time ¢; and use it as a prospective separation witness at time ¢;1. Since
H is a supporting plane of the polyhedron with the maximum number of vertices, the
test to check if it is a proper separating plane at time ;41 can be performed with at
most min(my, ms) inner products, where m; and mg are the number of vertices in PH;
and PHoy, respectively. When a cached witness fails to be a proper separating plane, an
attempt is made to compute another proper separating plane, if one exists. The first
step in computing a new proper separating plane is to find the two nearest points Q1
and Q2 on the boundaries of the two polyhedra. An efficient algorithm to do this is
given in the next section. Once @; and Q2 have been computed the separating plane is
then constructed by defining the plane normal as the difference Q2 — Q1. Then, let Q1
be a point on the plane. It should be noted that this separating plane construction is
different from the one described in (Baraff 1990). The main collision detection algorithm
is now defined.

Input : A pair of polyhedra PH; and PHy with m; and my vertices,
respectively (mj > my), and a prospective proper separating
plane H that is also a support plane of PH;.

Output : Whether or not the pair of polyhedra intersect.

begin
for i =0 toms—1do
d = {Q;, A) where Q; C PHy and A is normal to H.
ifd <0
test for new proper separating plane
if no proper separating plane exists

1.8 Fast Collision Detection of Moving Convex Polyhedra < 87

return intersection = TRUE

else
return intersection = FALSE
endelse
endif
endfor
return intersection = FALSE

end;

¢ Determining a Proper Separating Plane <

The problem of finding a proper separating plane between two convex polyhedra P H;
and PH is equivalent to the problem of finding two points W and @, W C conv(PH)),
Q C conv(PH>), that satisfy Equation (1), i.e., the two points in conv(PH;) and
conv(P Hy) nearest each other. An iterative algorithm due to (Gilbert et al. 1988) that
solves Equation (1) for convex sets and terminates after a finite number of steps if the
sets are polytopes (convex hulls of the polyhedra) will be presented.

Equation (1) requires the computation of the minimum norm of a set difference.
We can avoid dealing directly with this set difference by defining the polytopes in
terms of their support properties by using Equations (8) and (9). The problem of
solving Equation (1) for two polytopes P and P» can now be reduced to the problem
of finding the minimum norm of a single polytope P = P; — P». This is done by
generating a sequence of elementary polytopes contained in P that converge to the
polytype containing the point in P closest to the origin and is denoted by

V(P)e P, ||[V(P)||=min{|U||:U € P} (10)

When the algorithm terminates, the solution is expressed as

VP =Y MU =W—-Q, 20, Y N=1 U¢€P (11)
=1 i=1
where . :
W= AW, Wieh, Q=3 \Qi, Qi€PR (12)
i=1 i=1

The points W and Q in (12) represent the near points in P and P.

¢ Distance Algorithm <

The distance algorithm is based on the following theorem:

88 < Polygons and Polyhedra

Theorem 1 Let S C R™ be compact and convex and define Gg: R™ — R by
Gs(A) = |Al? + Hs(-A) (13)

Suppose A € S. Then (1) if Gs(A) > 0 there is a point U in the line segment conv
(A, Cs(~A)} satisfying U] < [Al; (2) A= V(S) if ond only if Gs(A) = 0; (3)
IA - V(S)]? < Gs(A).

PROOF: See (Gilbert et al. 1988). O

Input : A polytope P in R™, and an initial set of points {Q1,...,@m} C P,
where 1 <m <n-+1.
Output : V(P), such that V(P) is the point in P closest to the origin.

begin
set Pp ={Q1,...,@m},and k=0 /* first elementary polytope */
loop forever
Vi, = V(P) = sub-distance(Py)

compute H,(—Vj) /* support function w.r.t. —V; */
compute Cp(—V4) /* contact function w.r.t. —Vj */
Gp(Vx) = [Vall* + Hp(~Vk) /* Eq. (13) */

if Gp(Vi) =0
return V(P) =V}
else
set Pyy1 = PrU{Cp(—V%)} /* next elementary polytope */
endif
continue
end;

The above algorithm is guaranteed to converge to a solution in a finite number of
steps. The algorithm generates a sequence of elementary polytopes Py, until V(Pg) =
V(P). For each elementary polytope the function sub-distance computes V{(Fy), the
point in Py of minimum norm. sub-distance computes V(Py) explicitly and is designed
to be computationally efficient for lower dimension polytopes.

It is a simple process to generalize the distance algorithm to solve Equation (1) when
the sets are polytopes. It has already been shown how to compute the support and
contact functions of a set difference using Equations (8) and (9). The only issue that
remains is the choice of the initial points {Q1,...,Q@m} C P as input. In practice any
single point initialization scheme works. One method would be to choose randomly a
vertex from each polytope and use the vector difference. In (Gilbert et al. 1988) it is
suggested to use Cp(Uz —Uy), where U; and U are the centroids of the input polytopes.

1.8 Fast Collision Detection of Moving Convex Polyhedra 89

For problems which require the distance algorithm to be computed repeatedly for a
pair of moving polytopes over time (i.e., collision detection) we can use spatial coherence
to converge to a solution quickly. In most cases the convergence occurs in one iteration
of the distance algorithm. For example, if we computed the U;’s of (11) at time ¢;,
we can use these U;’s to initialize the algorithm at time ¢;;+1. In most animations the
time step is small and the vertices of the polytopes will remain relatively unchanged.
In this case the distance algorithm will only need to compute a new set of A’s for (11)
regardless of the size of the polytopes’ vertex sets.

Upon termination of the distance algorithm the proper separating plane can be con-
structed using the points from (12). Choose one of them to be a point on the plane,
and form the plane normal vector by subtracting one point from the other.

$ Sub-Distance Algorithm <

The sub-distance algorithm originated by (Johnson 1987) finds the point in a polytope
P closest to the origin where P = {W1, ..., Wy}, W; € R", 1 <m < n+1. It computes
Vj, in each iteration of the distance algorithm previously given. It is specifically designed
to be efficient when the number of points in P is small and when the solution set is
affinely independent. When the algorithm terminates, the solution is expressed as

V(P)= 3 AW, (14)

i€lg

where
A >0, Z/\jZI, i615C{1,...,m}
i€lg
and the set Pg = {W, :i € Ig} C P is affinely independent.

S represents a particular member from the collection of all non-empty subsets of P.
Since m is small the algorithm examines each of these subsets until a solution to (14)
is found.

Let us first consider solving the problem V (aff(Ps)), where Ps C P. Let {Q1,...,Qr}
be any ordering of Ps. Also, assume r # 1, since this would be a trivial solution. Then
V(aff(Ps)) = MQ1 +- -+ ArQr. The \; result from the minimization of FOq, A =
[MQ1 + -+ + ArQ,||> with the constraint that A; 4+ --- + A —1 = 0. This type of
minimization can be solved by applying the method of Lagrange multipliers, which
yields the linear system of equations AA = B, where

1 1
(Q2—91)TQ1 (QQ—Ql)TQr B- 0 (15)

@ -QTQ1 - (@ —Q)TQ 0

A=

90 ¢ Polygons and Polyhedra

We can solve such a system using Cramer’s method. Let us define the cofactors of
Ay,. Denote the cofactor of Ag; by A;(Ps), ¢ € Ig, where j satisfies Q; = W;. Since
Ay, contains all 1’s, the determinant of A is defined by

A(Ps) =Y Ay(Ps) (16)

iclg

If A(Pg) > 0, then the solution to V (aff(Pg)) is

V(aff(Ps)) = Y _ [Ai(Ps)/A(Ps)|W; (17)
iclg

A solution exists whenever Pg is affinely independent.

Suppose we want to compute V{(aff(Pg)) for each non-empty subset Ps € P. We
could compute the A;(Pg) and A(Ps) for each Pg; however, there is a more efficient
technique. Suppose we recursively compute A;(Ps) in order of increasing cardinality of
S. The idea is to append a row and column to A using W;, where j € Ig, and Ig is
the complement of Ig. Then

Aj(PsU{W;}) = > Ay(Ps)W! (We —W;), jelI§, k=min{ie€ Is} s
iels 18
Al({Wl}) =1, 2¢€ {1,...,m}

We can now define the sub-distance algorithm, which is based on the following theo-
rem.

Theorem 2 Given P and a non-empty subset Ps € P, V(conv(P)) can be expressed
as in (14) if and only if (1) A(Ps) > 0, (2) Ai(Ps) > 0, for each i € Is, and (3)
A;(Ps U {W;}) < 0 for each j € I§. Furthermore, the); in (14) are given by X\ =
A;(Ps)/A(Ps).

PROOF: See (Johnson 1987). O
Input : A polytope P = {W1,..., W, } € R"
where l <m <n+1.
Output : V(P), such that V(P) is the point in P closest to the origin.

begin
choose an ordering Py, s=1,...,0 of all subsets of P.
for s =1 to o do
if all conditions in Theorem 2 are met
return V(conv(P)) as computed in (14).
endloop
end;

1.8 Fast Collision Detection of Moving Convex Polyhedra ¢ 91

On rare occasions the sub-distance algorithm will not find a Pg that satisfies the
three conditions in Theorem 2. This is due to numerical roundoff error. In (Gilbert
et al. 1988) a back-up method is described which solves (14) when this situation occurs
by choosing the numerically best Pgs. This method has been implemented in the source
code.

¢ CCode ¢
#include <math.h>
typedef long Boolean;
#define FUZZ (0.00001)
#define TRUE (1)
#define FALSE (0)
#define MAX_VERTS (1026)
#define ABS(x) ((x) >0 2 (x) : —-(x))
#define EQZ(x) { ABS((x)) < FUZZ ? TRUE : FALSE)
#define DOT3 (u,v) (ul0]1*v[0] + ulll*v[1] + ul2]1*v[2])
#define VECADD3 (r,u,v) { r[0l=ul0l+vI[0]; r(ll=ulll+v([1l]; r[2]=ul2]+v[2]; }
#define VECADDS3 (r,a,u,v){r[0l=a*ul0l+v[0]; r(ll=a*ul[ll+v[1l]; r[2]=a*ul2]l+v[2];}
#define VECSMULT3(a,u) { ul0l= a * u[0]; ulll= a * ull]l; ul2]l=a * ul2]; }
#define VECSUB3(r,u,v) { r[0]=uf0]-v[0]; rill=ul[l]-vI[1]; ri{2]=ul2]-vi2]; }
#define CPVECTOR3(u,v) { ul0]=v[0]; ulll=vI(l]; uf2]=vi2]; }
#define VECNEGATE3 {(u) { ul0l=(-ul0]); ulll=(-ufl]); ul2)=(-uf21); }

#define GET(u,i,j,s) (*(u+i*s+3j))
#define GET3(u,i,J,k,s) (*{u+i*(s*2)+(j*2)+k))

/**

* The structure polyhedron is used to store the geometry of the primitives
* uged in this collision detection example. Since the collision detection
* algorithm only needs to operate on the vertex set of a polyhedron, and

* no rendering is done in this example, the faces and. edges of a

* polyhedron are not stored. Adding faces and edges to the structure for
* rendering purposes should be straightforward and will have no effect on
* the collision detection computations.

R R 2 2 2 2 2 R R R R R AR R R RS SRR RS R RS R RS L AR EEEEESEEEEEEEN

typedef struct polyhedron {
double verts [MAX_VERTS] [3]; /* 3D vertices of polyhedron. */

int m; /* number of 3D vertices. */
double trn[3]; /* translational position in world coords. */
double itrn([3]; /* inverse of translational position. */

} *Polyhedron;

92 < Polygons and Polyhedra

/**

*

*

*

*

*

*

*

*

The structure couple is used to store the information required to
repeatedly test a pair of polyhedra for collision. This information
includes a reference to each polyhedron, a flag indicating if there
is a cached prospective proper separating plane, two points for
constructing the proper separating plane, and possibly a cached set
of points from each polyhedron for speeding up the distance algorithm.

[EE SRR S SRR R XA RS SRS R AR RS E sl EREEEEEEEERE R

typedef struct couple {

3

Polyhedron polyhdrnl;
Polyhedron polyhdrn2;

Boolean plane_exists;
double pln_pntl[3];
double pln_pnt2[37;

int vert_indx[4]11[2];
int n;

*Couple;

/*
/*
/*
/*
/*
/*
/*

First polyhedron of collision test. */
Second polyhedron of collision test. */
prospective separating plane flag. */

lst point used to form separating plane. */
2nd point used to form separating plane. */
cached points for distance algorithm. */
number of cached points, if any. */

/*** Arrays for vertex sets of three primitives ***/

double box[24];
double c¢cyl1(108];
double sphere[1026];

/*** RJR 08/20/93

*

*

*

*

*

*

Kk A KA KK Ak kkhkkhhkkhh kR AR AR Ak Ak ko k ok kkk ok xr ok ok kkkkkkkkkkkkkkkkk

Function to create vertex set of a polyhedron used to represent a

box primitive.

On Entry:

box_verts - an empty array of type double of size 24 or more.
On Exit:

box_verts - vertices of a polyhedron representing a box with

dimensions length = 5.0, width = 5.0, and height = 5.0.

Function Return : none.

Kk kKK I kAR KA KA KRR AKRKAAA KA Ak hkk ko hkkhhkhkkk kR khk Ak F Ak kA Ak kA AR hk kK Fhhhhhkhkkhk* /

void mak_box (box_verts)

double box_vertsl[];
{
int i;
static double verts[24]
{-5.0, 5.0, 5.0,
5.0, 5.0, 5.0,
5.0, -5.0, -5.0,

-5.
5.

.0,

5.0, -5.0, 5.0, 5.0, -5.0,

-5.0, 5.0, -5.0, -5.0, -5.0,
-5.0, 5.0};

1.8 Fast Collision Detection of Moving Convex Polyhedra { 93

for (i = 0; 1 < 24; i++)
box_verts[i] = verts{il];

/*** RJR 08/20/93 Ik kkhhhh ko kA hhkhkhkhkhkkrhrhrhhhhkrhkhhhhhhdkdkohkokk kkkdkdkdhdhdhdkhdkir

* Function to create vertex set of a polyhedron used to approximate
* a cylinder primitive.

* On Entry:
* cyl_verts - an empty array of type double of size 108 or more.

* On Exit:
* cyl_verts - vertices of a polyhedron approximating a cylinder with
* a base radius = 5.0, and height = 5.0.

* Function Return : none.
*

**/

void mak_cyl(cyl_verts)

double cyl_verts[];
{
int i;
double *pD_1, *pD_2, rads, stp, radius;
pD_1 = cyl_verts; pD_2 = cyl_verts + 54;
stp = 0.34906585; rads = 0.0; radius = 5.0;
for (i = 0; 1 < 18; 1i++) {
pD_1[0] = pD_2[0] = radius * cos(rads}; /* X for top and bot. */
pD_1[1] = 5.0; /* Y for top */
pD_2[1] = 0.0; /* Y for bot. */
pD_1[2] = pD_2[2] = -(radius * sin(rads)); /* Z for top and bot. */
rads += Stp; pD_1 += 3; pD_2 += 3;
}
}

/*** RJR 08/20/93 ok kkkhkkkkhkhkkdhdkkhkhkhhkkkkokkkkkk Kk kodkokdkddkhkxhkkkhdkkdkkkkkkkkdkkkkx

* Function to create vertex set of a polyhedron used to approximate
* a sphere primitive.

* On Entry:
* sph_verts - an empty array of type double of size 1026 or more.

* On Exit:

* sph_verts - vertices of a polyhedron approximating a sphere with
* a radius = 5.25.

* Function Return : none.

Ak kk kR Kk kR hkkk ok kkkhkk ok ok hk ok k kA Ak h ok ok ok kkkk Ak dhkkhdkkhhkkkkkkkhkkrdkkhkhhkkddhxk /

94 < Polygons and Polyhedra

void mak_sph(sph_verts)
double sph_verts([];
{
int i, 3;
double rads_1, rads_2, stp_l, stp_2, *pD_l, *pD_2, radius;

rads_1 = 1.570796327; stp_1 = 0.174532935;
rads_2 = 0.0; stp_2 = 0.34906585;
pD_1 = sph_verts; radius = 5.25;
for (i = 0; 1 < 19; i++) {
pD_1[0] = radius * cos(rads_1); pD_1[1] = radius * sin(rads_1);
pD_1(2]1 = 0.0;
if (EQZ(pD_1[01))
pD_1[0] = 0.01;
rads_2 = 0.0; stp_2 = 0.34906585;

for (j = 0; J < 18; j++) {
pb_2 = pD_1 + j * 3'

pD_2[0] = pD_1[0] * cos(rads_2) - pD_l[2] * sin(rads_2); /* X */
pb_2{1) = pD_1I[1] /* Y */
pD_2[2] = -(pD_1[0] * sin{(rads_2) + pD_1[2] * cos{rads_2)); /* Z */
rads_2 += stp_2;

}

pD_1 += 54; rads_1 -= stp_1;

/**% RJR 05/26/93 hkkkhhkhkdkrhhhkhhkhhkhhkhhkkhhhkkdkkhrkkrkrkkkkrkkxkkdkkkhkkkhkhk &k x*x

* Function to evaluate the support and contact functions at A for a given
* polytope. See Eguations (6) & (7).

* On Entry:

* P - table of 3-element points containing polytope vertices.

* r - number of points in table.

* A - vector at which support and contact functions will be evaluated.
* Cp - empty 3-element array.

* P_1i - pointer to an int.

* On Exit:

* Cp - contact point of P w.r.t. A.

* P_i - index into P of contact point.

*

* Function Return

* the result of the evaluation of Eq. (6) for P and A.

KA KK KKK h Ak ok khkhkkkhkhkhkkhkkkkk kA A A A KA A A K Ik bk kA kA Ak kA kkk Ak kkkkd ko kkkkkkkkkk k% /

double Hp(P, r, A, Cp, P_i)
double P[1[31, All, Cpl]:

1.8 Fast Collision Detection of Moving Convex Polyhedra

int r, *P_i;
{
int i;
double max_val, val;
max_val = DOT3(P[0], A): *p_i = 0;
for (i 1; 1 < r; 1++) {

; val = DOT3(P[{i], A);
| if (val > max_val) {
*P_i = i;
max_val = val;

}
CPVECTOR3 (Cp, P[*P_i]);

return max_val;

/*** RJR 05/26/93 ***
*
* Function to evaluate the support and contact functions at A for the

* set difference of two polytopes. See Equations (8) & (9).
*

* On Entry:

* On Exit:

* Cs - solution to Equation (9).
* Pl_i - index into Pl for solution to Eguation (9).
* P2_1i - index into P2 for solution to Equation (9).

* Function Return
* the result of the evaluation of Eg. (8) for Pl and P2 at A.

*

**/

double Hs(Pl, ml, P2, m2, A, Cs, P1_i, P2_1)

double P1{](3], P2[1[3]), A[l, Csl];
int ml, m2, *Pl_1i, *P2_1i;
{

double Cp_1(3], Cp_2[3), neg_A[3]), Hp_l, Hp_2;

Hp_l = Hp(Pl, ml, A, Cp_1l, PLl_i);

* Pl _ table of 3-element points containing first polytope's vertices.
* ml - number of points in P1.

* P2 _ table of 3-element points containing second polytope's vertices.
* m2 - number of points in P2.

* A - vector at which to evaluate support and contact functions.

* Cs - an empty array of size 3.

* Pl_i - a pointer to an int.

* P2_i - a pointer to an int.

o 95

96 < Polygons and Polyhedra

CPVECTOR3 (neg_A, A);

VECNEGATE3 (neg_A) ;

Hp_2 = Hp(P2, m2, neg_A, Cp_2, P2_1i);
VECSUB3 (Cs ,Cp_1, Cp_2);

return (Hp_1l + Hp_2);

/*** RJR 05/26/93 kkdkhkhkhkhkkkhkhhhkhrhhkrhkhhhhhhkhhhkhkdkrkhkrkrhkkkhdhhhdhhdhkkdkhkhhdhdkk

* Alternate function to compute the point in a polytope closest to the
* origin in 3-space. The polytope size m is restricted to 1 < m <= 4.
* This function is called only when comp_sub_dist fails.

* On Entry:

* stop_index - number of sets to test.

* D_P - array of determinants for each set.
* Di_P - cofactors for each set.

* Is - indices for each set.

* c2 - row size offset.

* On Exit:

* Function Return
* the index of the set that is numerically closest to Eg. (14).

*************************'k**/

int sub_dist_back(P, stop_index, D_P, Di_P, Is, c2)

double P[]1(3], Di_pP[][4], *D_P;
int stop_index, *Is, c2;
{
Boolean first, pass;
int i, k, s, is, best_s;
float sum, v_aff, best_v_aff;
first = TRUE; best_s = -1;
for (¢ = 0; s < stop_index; s++) {

pass = TRUE;
if (D_P{s] > 0.0) {
for (1 = 1; 1 <= GET(Is,s,0,c2); i++) {
is = GET(Is,s,1,c2);
if (Di_P[s]{is] <= 0.0)
pass = FALSE;

}
else
pass = FALSE;

if (pass) {

/*** Compute Equation (33) in Gilbert ***/

1.8 Fast Collision Detection of Moving Convex Polyhedra

k = GET(Is,s,1l,c2);
0;

1; i <= GET(Is, s, 0, c2); i++) {
is = GET(Is,s,1,c2);

sum += Di_P[s][is] * DOT3(P[is],P[k]);

}
v_aff = sqgrt(sum / D_P{s]);
if (first) {
best_s = s;
best_v_aff = v_aff;
first = FALSE;

}
else {
if (v_aff < best_v_aff) {
best_s = s;
best_v_aff = v_aff;
}
}
}
}
if (best_s == -1) {
printf {"backup failed\n"};
exit (0);

}

return best_s;

/*** RJR 05/26/93 ***
*

* Function to compute the point in a polytope closest to the origin in

* 3-gpace. The polytope size m 1s restricted to 1 < m <= 4.

*

* On Entry:

* P - table of 3-element points containing polytope's vertices.
* m - number of points in P.

* jo - table of indices for storing Dj_P cofactors in Di_P.

* Is - indices into P for all sets of subsets of P.

* IsC - indices into P for complement sets of Is.

* near_pnt - an empty array of size 3.

* near_indx - an empty array of size 4.

* lambda - an empty array of size 4.

* On Exit:
* near_pnt - the point in P closest to the origin.

* near_indx - indices for a subset of P which is affinely independent.
* See Eg. (14).

* lambda - the lambda as in Eg. (14).

*

* Function Return

* the number of entries in near_indx and lambda.

*

**/

97

98 < Polygons and Polyhedra

int comp_sub_dist(P, m, jo, Is, IsC, near_pnt, near_indx, lambda)

double P[][3], near_pnt[], lambdall;
int m, *jo, *Is, *IsC, near_indx({];
{
Boolean pass, fail;
int i, j, k, isp, is, s, row, col, stop_index, cl, c2;
double D_P[15], x(3], Dj_P, Di_P[15]1[4];
static int combinations{5] = {0,0,3,7,15};
stop_index = combinations{m]; /** how many subsets in P **/
cl =m; c2 =m+ 1; /** row offsets for IsC and Is **/

/** Initialize Di_P for singletons **/

Di_P[0][0] = Di_P[1][1] = Di_P[2][2] = Di_P[311[3] = 1.0;
s = 0; pass = FALSE;
while ((s < stop_index) && (!pass)) { /* loop through each subset */
D_P[s] = 0.0; fail = FALSE;
for (i = 1; i <= GET(Is,s,0,c2); i++) { /** loop through all Is **/
is = GET{Is,s,i,c2);
if (Di_P[s][is] > 0.0) /** Condition 2, Theorem 2 **/
D_P[s] += Di_Pl[s]l[is];: /** sum from Eg. (16) *x/
else
fail = TRUE;
}

for (j = 1; j <= GET(IsC,s,0,cl); j++) { /** loop through all IsC * %/
Dj_P = 0; k = GET(Is,s,l,c2);
isp = GET(IsC,s,Jj,cl);

for (1 = 1; i <= GET(Is,s,0,c2); i++) {
is = GET(Is,s,i,c2);
VECSUB3 (x, P[k], Plispl); /** Wk - Wi Eq. (18) **/
Dj_P += Di_P[s][is} * DOT3(P{is]), x}; /** sum from Eq. (18) **/
}
row = GET3(jo,s,isp,0,cl);
col = GET3(jo,s,isp,1,cl);

Di_Plrow] [col]l = Dj_P; /** add new cofactors **/
if (Dj_P > 0.00001) /** Condition 3, Theorem 2 **/
fail = TRUE;
}
if ((!fail) && (D_P[s] > 0.0)) /** Conditions 2 && 3 && 1, Theorem 2 **/
pass = TRUE;
else
S++;

}

if (!pass) {
printf{"*** using backup procedure in sub_dist\n"};
s = sub_dist_back(P, stop_index, D_P, Di_P, Is, c2);

1.8 Fast Collision Detection of Moving Convex Polyhedra

near_pnt [0} = near_pnt{l] = near_pnt[2] = 0.0;

j = 0;

for (i = 1; i <= GET(Is,s,0,c2); i++) { /** loop through all Is **/
is = GET(Is,s,i,c2);
near_indx(j] = is;
lambdal[j] = Di_P[s}[is] / D_PI[s]; /** BEg. (17) **/
VECADDS3 (near_pnt, lambdal[j]l, P[is], near_pnt); /** Eqg. (17) *x/
J++;

return (j-1);

}

/*** RJR 05/26/93 Kk khkkhkk Ak kA AKX A KR KA A AR Ak A * kA bk hkkhhkhkhkhkkrkhkkdrkdk kb kkkkkk i

* Function to compute the point in a polytope closest to the origin in
* 3-space. The polytope size m is restricted to 1 < m <= 4.

* On Entry:

* P - table of 3-element points containing polytope's vertices.
* m - number of points in P.

* near_pnt - an empty array of size 3.

* near_indx - an empty array of size 4.

* lambda - an empty array of size 4.

* On Exit:

* near_pnt - the point in P closest to the origin.

* near_indx - indices for a subset of P which is affinely independent.
* See Eg. (14).

* lambda - the lambda as in Eqg. (14).

* Function Return
* the number of entries in near_indx and lambda.

**/

int sub_dist (P, m, near_pnt, near_indx, lambda)

double P[{}1(3], near_pnt[], lambdall;
int near_indx[], m;
{
int size;
/*

* Tables to index the Di_P cofactor table in comp_sub_dist. The s,1
* entry indicates where to store the cofactors computed with Is_C.

static int jo_2[2]1(2112] = { {{0,0}, {2,1}},
{({2,0}, {0,03}}};

& 99

100 < Polygons and Polyhedra

static int

static¢ int

These tables represent each Is.

jo 3161031121 = { {{0,0}, (3,1}, {4,2}},
{{3,0}, {0,0}, {5.,2}1,
{{4,0}, (5,1}, {0,0}},
{{0,0}, {0,0}, {6,2}},
{{0,0}, {6,1}, {0,0}},
{{6,0}, {0,0}, {0,0}}};

jo_4{141041([2] = {

the size of the set.

static int

static int

static int

These tables represent each Is complement.

Is_2[3]11[3]

Is_3(7]1[4]

Is_4[15][5]

i

e T NNV

(0,03},
{0,0},{10,1},

(0,0}, (4,1}, (5,2}, {6,3}}.
{4,0}, (0,0}, (7.2}, {(8,3}},
{5,0}, (7,1}, (0,0}, {9,3}},
(6,0}, (8,1}, {9.,2}, {0,0}},
{0,0},{10,23,{11,3}},
{0,0},1{12,3}},

{ {0,0},{11,1},{12,2}, {0,0}},
{{10,0}, (0,0}, {0,0},{13,3}},

{{11,0},
{{12,0},{13,1},

{0,0},{13,2}, {0,0}},
{0,0}, {0,0}},

{ {0,0}, {0,0}, {0,0},{14,3}},

{ {0,0},
{ {0,0},{14,1},

{0,0},{14,2}, {0,0}},
{0,0}, {0,031},

{{14,0}, {0,0}, (0,0}, {0,0}3}};

{ {1,0,0}, {1,1,0},

{ {1,0,0,0},
{2,0,2,0},

{ {1,0,0,0,0},
{1.3,0,0,0},
{2,0,3,0,0},
{2,2,3,0,0},
{3,0,2,3,0},

indicates the size of the set.

static int

static int

static int

IsC_2[3]1[2]

IsC_3[7])[31]

IsC_4[15]1[4)

{1,1,0,0},
{2,1,2,0},

{ {1,1}, {1,0}, {0,0}};

{ {2,1,2}, {2,0,2},

{1,0,0}, {0,0,0}};

{{3,1,2,3},
{2,2,3,0},
{2,0,2,0},
{1,1,0,0},

{3,0,2,3},
{2,1,3,0},
{2,0,1,0},
{(1,0,0,0},

The first column of each row indicates

{2,0,1}};

{1,2,0,0}, {2,0,1,03,
{3,0,1,2}3;

{1,1,0,0,0}, {1,2,0,0,0},
{2,0,1,0,0}, {2,0,2,0,0},
{2,1,2,0,0}, {2,1,3,0,0},
{3,0,1,2,0}, {3,0,1,3,0},
{3,1,2,3,0}, {4,0,1,2,3}};

The first column of each row

{2,0,1}, {1,2,0}, {1,1,0},

{3,0,1,3}, {3.0,1,2},
{2,1,2,0}, {2,0,3,0},
{1,3,0,0}, {1,2,0,0},
{0,0,0,0}};

1.8 Fast Collision Detection of Moving Convex Polyhedra ¢ 101

/** Call comp_sub_dist with appropriate tables according to size of P **/

switch (m) {

case 2:

gize =

break;
case 3:

gize =

break;
case 4:

size =

break;

return size;

comp_sub_dist (P, m, jo_2, Is_2, IsC_2, near_pnt,
near_indx, lambda);

comp_sub_dist (P, m, jo_3, Is_3, IsC_3, near_pnt,
near_indx, lambda) ;

comp_sub_dist (P, m, jo_4, Is_4, IsC_4, near_pnt,
near_indx, lambda);

/*** RJR 05/26/93 KR A AKR A AR KR AR KA AR AR KA AR AR Rk bk R Rk Ak kkkkkk ok kk ok ok kkkk ok d ok &k kkkkok

*

*

*

*

Function to compute the minimum distance between two convex polytopes in

3-space.

On Entry:

P1 -
ml -
P2 -
m2 -
VP -
near_indx -

lambda -
m3 -

On Exit:

Vp -

near_indx -

lambda -
m3 -

table of 3-element points containing first polytope's vertices.
number of points in P1.

table of 3-element points containing second polytope's vertices.
number of points in P2.

an empty array of size 3.

a 4x2 matrix possibly containing indices of initialization
points. The first column contains indices into P1l, and the second
column contains indices into P2.

an empty array of size 4.

a pointer to an int, which indicates how many initial points

to extract from near_indx. If 0, near_indx is ignored.

vector difference of the two near points in Pl and P2.

The length of this vector is the minimum distance between P1
and P2.

updated indices into P1 and P2 which indicate the affinely
independent point sets from each polytope which can be used
to compute along with lambda the near points in P1 and P2

as in Eg. (12). These indices can be used to re-initialize
dist3d in the next iteration.

the lambda as in Egs. (11) & (12).

the updated number of indices for Pl and P2 in near_indx.

102 < Polygons and Polyhedra

* Function Return : none.
*

KAk k kK AR NI AR KA A ARk khkhkkhkkh ok kA hkhkkk ok kx ko kkkFhkkhk kR Ak kX ke ok khhkk kA A xxxkkkhh ok k /

void dist3d(pPl, ml, P2, m2, VP, near_indx, lambda, m3)

double PL[]13], P2[11[31, VP[], lambdall;:
int ml, m2, near_indx[][2], *m3;
{
Boolean pass;
int set_size, I[4], i, j, i_tabl4], j_tabl4l, Pl_i, P2_1i, k;
double Hs (), Pk[4][3], Pk_subset{4][3], Vk[3], neg_Vk[3], Cp[3],
Gp;
if ((*m3) == 0) { /** if *m3 == 0 use single-point initialization **/
set_size = 1;
VECSUB3 (Pk[0], P1[0], P2[0]); /** first elementary polytope **/
i_tab(0] = j_tab(0] = 0;
}
else { /** else use indices from near_indx **/
for (k = 0; k < (*m3); k++) {
i = i_tablk] = near_indx[k][(0];
j = j_tabfk] = near_indx[k][1];
VECSUB3 (Pk[k], P1[i], P2[3j1});: /** first elementary polytope **/
}
set_size = *m3;
}

pass = FALSE;
while (!pass) {

/** compute Vk **/

if (set_size == 1) {
CPVECTOR3 (Vk, Pk([0]);
I[(0] = 0;

}

else

set_size = sub_dist (Pk, set_size, Vk, I, lambda);

/** eq. (13) **/

CPVECTOR3 (neg_Vk, Vk):
Gp = DOT3(Vk, Vk) + Hs(Pl, ml, P2, mzZ,

VECNEGATE3 (neg_VKk) ;

neg_vVk, Cp, &P1_1i, &P2_1i};

/** keep track of indices for Pl and P2 **/

for (1 = 0; 1 < set_size; i++) {
j o= Ilil;
i_tab(i] = i_tabljl;

j_tab{i] = j_tabl3];

it (EQZ(Gp))

/** § 1s value from member of some Is **/
/** j ig value from member of some Is **/

/** Do we have a solution set? **/

A

1.8 Fast Collision Detection of Moving Convex Polyhedra { 103

pass = TRUE;

else {
for (i = 0; i < set_size; 1i++) {
j o= T[i];
CPVECTOR3 (Pk_subset [1}, Pk[jl); /** extract affine subset of Pk **/
}
for (1 = 0; 1 < set_size; i++)
CPVECTOR3 (Pk[i], Pk_subset[i]); /** load into Pk+l **/
CPVECTOR3 (Pk[1], CD); /** Union of Pk+l with Cp **/

i_tab[i] = Pl_i; J_tabli] = P2_1i;
set_size++;

}
}
CPVECTOR3 (VP, Vk); /** load VP **/
*m3 = set_size;
for(i = 0; 1 < set_size; 1i++) {
near_indx[i] (0] = i_tabilil; /** get indices of near pnt. in Pl **/
near_indx([i][1] = j_tabl[i]; /** get indices of near pnt. in P2 **/
}

/*** RJR 05/26/93 Ak kA KAk kA Ak kR hkkk kA k kX kA A d ARk hhhhhhkhh kA Rk X hkkkkkkkokokkkok&kkx

* Function to compute a proper separating plane between a pair of
* polytopes. The plane will be a support plane for polytope 1.

* On Entry:
* couple - couple structure for a pair of polytopes.

* On Exit:
* couple - containing new proper separating plane, if one was

* found.

* Function Return
* result of whether or not a separating plane exists.

hk ok k ok k Ak Ak kA ARk kR AR KA KKK IR KRR AR I AR N AR KA A AR A I Ak hhhkhkkkkkkkdkkh ko kkkk ok kkkhk /

Boolean get_new_plane (couple)

Couple couple;
{
Polyhedron polyhedronl, polyhedron2;
Boolean plane_exists;
double pntsl [MAX_VERTS] [3], pnts2[MAX_VERTS][3], dist,
ul3], v(3], lambdal4], VP[3];
int i, k, mi, m2;

plane_exists = FALSE;

polyhedronl = couple->polyhdrnl; polyhedron2 = couple-»>polyhdrn2;

104 < Polygons and Polyhedra

/** Apply M1 to vertices of polytope 1 **/

ml = polyhedronl->m;

for (1 = 0; 1 < ml; i++) {
CPVECTOR3 (pntsl{i}, polyhedronl-s>verts([i]);
VECADD3 (pntsl[i], pntsl([i], polyhedronl->trn);

/** Apply M2 to vertices of polytope 1 **/
m2 = polyhedron2->m;
for (1 = 0; 1 < m2; i++) {
CPVECTOR3 {pnts2[i], polyhedron2->verts(i]);
VECADD3 (pnts2{i], pnts2([i], polyhedron2->trn);
/** solve Eg. (1) for two polytopes **/

dist3d(pntsl, ml, pnts2, m2, VP, couple->vert_indx, lambda, &couple->n);

dist = sqrt(DOT3(VP,VP)}; /** distance between polytopes **/
if (1EQZ(dist)) { /** Does a separating plane exist? **/
plane_exigts = TRUE;
ul0] = ull]l = ul2] = vI[0] = v[1) = v[2] = 0.0;
for (i = 0; i < couple->n; i++) {
k = couple-»vert_indx[i][0];
VECADDS3 (u, lambdali), pntsl{k], u); /** point in P1 **/
k = couple-»vert_indx{il[1];
VECADDS3 (v, lambdalil, pnts2(k], v)}; /** point in P2 **/

/** Store separating plane in Pl's local coordinates **/

VECADD3 (u, u, polyhedronl-»itrn);
VECADD3 (v, v, polyhedronl->itrn);

/** Place separating plane in couple data structure **/
CPVECTOR3 (couple->pln_pntl, u};
CPVECTORS3 (couple->pln_pnt2, v);

}

return plane_exists;

}

/*** RJR 05/26/93 Kk kKRR A A ARk kA AR A A AR A I I AFARRR RN Ak h ks hkkkkrkkkkhhkkkokkkksx

* Function to detect if two polyhedra are intersecting.

* On Entry:
* couple - couple structure for a pair of polytopes.

* On Exit:

*
* F
*

*

1.8 Fast Collision Detection of Moving Convex Polyhedra

unction Return

result of whether polyhedra are intersecting or not.

¢

LEEE R R R SRS E RS RS E R R R SRS RS S RS RSl EREEEEEEEEEEEEEREREIES)

Boolean Collision(couple)

Couple couple;

{
Polyhedron polyhedronl, polyhedron2;
Boolean collide, loop;
double ul31, v{3], norm([3], d;
int i, m;
polyhedronl = couple->polyhdrnl;

col

if

}

lide = FALSE;

(couple->plane_exists) {

polyhedron2 = couple->»polyhdrn2;

/** Transform proper separating plane to P2 local coordinates. **/

/** This avoids the computaticnal cost of applying the
/** transformation matrix to all the vertices of P2.

CPVECTOR3 (u, couple->pln_pntl);

VECADD3 (u, u, polyhedronl->trn);
VECADD3 (u, u, polyhedron2->itrn);

VECSUB3 (norm, v, u);

*k)

*%/

CPVECTOR3 (v, couple->pln_pnt2);
VECADD3 (v, v, polyhedronl->trn});

VECADD3 (v, v, polyhedron2->itrn);

m = polyhedron2->m; i = 0; loop = TRUE;
{

while ({1 < m) && (loop))

/** Evaluate plane equation **/

VECSUB3 (v, polvhedron2-»verts[il],

d = DOT3 (v, norm);

if (d <= 0.0) {
loop = FALSE;

/x*

if (!get_new_plane(couple)) {

collide = TRUE;
couple->plane_exists =

1++;

else

if (get_new_plane{couple)) {
couple->plane_exists = TRUE;
}
else
collide = TRUE;

Jx*

FALSE;

J**

Jx*

u);

is P2 in opposite half-space **/

Collision **/

No collision **/

Collision **/

105

106 < Polygons and Polyhedra

return collide;

/*** RJR 05/26/93 Ak kkkkhrhkhkkhkkkhdkhkh bk hkhkkrhdkhkhhhkhrhkkhkkkhkrkkhkhkhdhkh kb xk

*

* Function to initialize a polyhedron.
*

* On Entry:
* polyhedron - pointer to a polyhedron structure.

* verts - verts to load.
* m - number of verts.
* tx - X translation.
* ty - y translation.
* tz - z translation.

* On Exit:

* polyhedron - an initialized polyhedron.
*

* Function Return : none.

*

**/

void init_polyhedron (polyhedron, verts, m, tx, ty, tz)

Polyhedron polyhedron;

double *verts, tx, ty, tz;

int m;

{
int i;
double *p;
polyhedron->trn[0] = ¢tx; polyhedron->trn(l] = ty;
polyhedron->trn[2] = tz;
polyhedron->itrn[0] = -tx; polyhedron->itrn{l] = -ty;
polyhedron->itrn[2] = -tz;

polyhedron->m = m;

p = verts;

for (1 = 0; 1 < m; i++) {
CPVECTOR3 (polyhedron->verts(i], p);
p += 3;

}

/*** RJR 05/26/93 ***
*

* Function to move a polyhedron.

*

* On Entry:

* polyhedron - pointer to a polyhedron.

* tx - x translation.

1.8 Fast Collision Detection of Moving Convex Polyhedra <)

* ty - y translation.
* tz - z translation.

* On Exit:
* polyhedron - an updated polyhedron.

* Function Return : none.
*

**/

void move_polyhedron (polyhedron, tx, ty, tz)

Polyhedron polyhedron;

double tx, ty, tz;

{
polyhedron->trn[0] += tx; polyhedron->trn[l] += ty;
polyhedron->trnf2] += tz;

polyhedron->itrn[0] -= tx; polyhedron->itrnll] -= ty;
polyhedron->itrn[2] -= tz;

/*** RJR 05/26/93 khkhkhkhhkhkhkhhkhhkkdkrhkkhhhkhdkhhkkkkkkhkkdkrhhkrkkkkhxkkkkkdkhkkkh kK

*

* This is the Main Program for the Collision Detection example. This test
* program creates the vertices of three polyhedra: a sphere, a box, and a
* cylinder. The three polyhedra oscillate back and forth along the x-axis.
* A collision test is done after each movement on each pair of polyhedra.
* This test program was run on an SGI Onyx/4 and an SGI 4D/80. A total of
* 30,000 collision detection tests was performed. There were 3,160

* collisions detected. The dist3d function was called in 14% of the

* collision tests. The average number of iterations in dist3d was 1.7.

* The above functions are designed to compute accurate solutions when

* the polyhedra are simple and convex. The functions will work on

* concave polyhedra, but the solutions are computed using the convex hulls
* of the concave polyhedra. In this case when the algorithm returns a

* disjoint result, it is exact, but when it returns an intersection result

* it is approximate.
*

Ak kR AR AR AR A AR R I AR RN A AR I AR KA I AR Rk Ak ko hhhkkhhhkkkdF ARk kkkkdrhkkkkkkkkkkhkk ok /

main()
{
Polyhedron Polyhedronl, Polyhedron2, Polyhedron3;
Couple Couplel, Couple2, Couple3;
double xgtpl, xstp2, xstp3;
int i, steps;
long hits = 0;

/*** Initialize the 3-test polyhedra ***/

mak_box (box) ;
nak_cyl{(cyl);
mak_sph (sphere) ;

107

108 < Polygons and Polyhedra

Polyhedronl = (Polyhedron)malloc(sizeof (struct polyhedron));
init_polyhedron(Polyhedronl, sphere, 342, 0.0, 0.0, 0.0);

Polyhedron2 = (Polyhedron)malloc(sizeof (struct polyhedron)) ;
init_polyhedron(Polyhedron2, box, 8, 50.0, 0.0, 0.0);

Polyhedron3 = (Polyhedron)malloc({sizeof (struct polyhedron)) ;
init_polyhedron (Polyhedron3, cyl, 36, -50.0, 0.0, 0.0);

Couplel = (Couple)malloc(sizeof (struct couple));

Couplel-»>polyhdrnl = Polyhedronl; Couplel->»>pelyhdrn2 = PolyhedronZ;
Couplel-»>n = 0;

Couplel->plane_exists = FALSE;

Couple2 = (Couple)malloc (sizeof (struct couple));

Couple2->polyhdrnl = Polyhedronl; Couple2->pelyhdrn2 = Polyhedron3;
Couple2->n = 0;

Couple2->plane_exists FALSE;

Couple3 = (Couple)malloc(sizeof (struct couple));

Couple3->polyhdrnl = Polyhedron3; Couplel3d-»>polyhdrn2 = Polyhedron2;

Couple3->n = 0;
Couple3->plane_exists = FALSE;

/** Perform Collision Tests **/
xstpl = 1.0; xstp2 = 5.0; xstp3 = 10.0; steps = 10000;

for (1 = 0; i < steps; 1++) {
move_polyhedron(Polyhedronl, xstpl, 0 0
move_polyhedron (Polyhedron2, xstp2, 0.0, 0.
move_polyhedron (Polyhedron3, xstp3, 0 0

if (Collision{Couplel))
hits++;

if (Colligion(Couple2))
hits++;

1f {(Collision(Couple3))
hits++;

if (ABS(Polyhedronl->trn[0]) > 100.0)

xstpl = -xstpl;
if (ABS(Polyhedron2->trn[0]) > 100.0)
xXstp2 = -xXstp2;
if (ABS(Polyhedron3->trn[0]) > 100.0)
xstp3 = -xstp3;
}
printf ("number of tests = %d\n", (steps * 3));

printf ("number of hits = %ld\n", hits);

1.8 Fast Collision Detection of Moving Convex Polyhedra < 109

¢ Bibliography ¢
(Baraff 1990) David Baraff. Curved surfaces and coherence for non-penetrating rigid

body simulation. Computer Graphics, 24(4):19-28, 1990.

(Gilbert et al. 1988) E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure
for computing the distance between complex object in three-dimensional space.
IEEE Journal of Robotics and Automation, 4(2):193-203, 1988.

(Johnson 1987) Daniel Johnson. The Optimization of Robot Motion in the Presence of
Obstacles. University of Michigan, Ph. D. Dissertation, 1987.

(Rockafellar 1970) R. T. Rockafellar. Convex Analysis. Princeton University Press,
1970.

o e

Geometry

This part of the book contains a mix of formulas, optimized algorithms, and tutorial
information on the geometry of 2D, 3D, and n-D space.

I.1. Distance to an Ellipsoid, by John C. Hart.

Gives the formulas necessary to find the distance from a point to an ellipsoid, or from
a point to an ellipse. These formulas can be useful for geometric modeling or for ray
tracing. Page 113.

I.2. Fast Linear Approximations of Euclidean Distance in Higher Dimensions, by
Yoshikazu Ohashi.

Provides optimized formulas for approximating Euclidean distance in two or more di-
mensions without square roots. Page 120.

I1.3. Direct Outcode Calculation for Faster Clip Testing, by Walt Donovan and

Tim Van Hook.

A very clever optimization of clip testing that exploits the properties of IEEE float-
ing point format. Techniques are described to compute the “outcodes” needed for line
clipping using only integer arithmetic. Page 125.

I.4. Computing the Area of a Spherical Polygon, by Robert D. Miller.

Cives the formulas needed to find the area of a polygon on a sphere that is bounded by
great circle arcs. This is useful in cartography. Page 132.

111

112 & Geometry

IL.5. The Pleasures of “Perp Dot” Products, by F. S. Hill, Jr.
A tutorial on the “perp dot product,” which is the dot product, in 2D, of one vector
and the vector perpendicular to another. Page 138.

11.6. Geometry for N-Dimensional Graphics, by Andrew J. Hanson.
A tutorial on n-dimensional geometry. Hanson generalizes a number of familiar concepts,
such as plane equations, clipping, volume, and rotation, to n-D. Page 149.

1.1

Distance to an Ellipsoid

John C. Hart

School of Electrical Engineering and Computer Science
Washington State University

Pullman, WA 99164-2752

hart@eecs.wsu.edu

¢ Introduction <

The following Gem derives a formula for the distance from a point to an ellipsoid.
The problem came to the author’s attention when developing a method for rendering
surfaces implicitly defined by functions that return the distance to the surface (Hart
1993).

Without loss of generality, the ellipsoid E is centered at the origin with principal axes
parallel to the coordinate axes. This canonical state is within an isometry of any par-
ticular case. The distance d(xg, F) is the length of the shortest line segment connecting
Xp to any point x on the ellipsoid. This segment will be normal to the ellipsoid at x, as
are all such points x that satisfy the equation

xp — X = an(x) (1)

where n(x) is the (not necessarily unit length) surface normal at x pointing outside the
ellipsoid. The distance to an ellipsoid is hence given by the formula

d(x0, E) = max|[n]| (2)

where aumax 1S the greatest solution to (1) and n is the normal of the closest point on
the ellipsoid.

¢ Implicit Form <

The function
2 2 2

T Y z
f(X)—;2‘+b—2+§—1 (3)
implicitly defines an ellipsoid with principal axes of radius a,b, and c. The normal to

an implicit surface at x is defined by the gradient

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

113 Macintosh ISBN 0-12-336156-7

114 & Geometry

Since we are only interested in the normal direction, we will drop the factor of two in
the following derivations.
Substituting (4) into (1) produces the system of equations

T
ro— — O—y
a2
_ Y
Yo—Yy = ab—Q
z
20— — G—
2
which yields an expression for x given « as
a2m0
r = 2
a+a
y = b*yo
a+ b2
C2ZO
z = 5
a—+c

Plugging this expression into (3) constrains x to the ellipsoid, producing

a2x(2) b2y8 c? zg

ara®? T aro?E ot

which has the same solutions as
ot PPt EPad 4 (k0 Bt PR+ (ot @+ PEF
= (a+a?)?(a+ b))% (a+ c?)?
¢ Parametric Form <

The same formula results from the parametric derivation. A parametric function for an
ellipsoid is

x(u,v) = (aCyCy, bCy Sy, ¢Sy)

where C, = cosv, S, = sinv, and likewise for u. Then, by the normal transformation
rule (Barr 1984), we have

1
n(u,v) = chcu, %cvsu,zsv> (6)

1.1 Distance to an Ellipsoid ¢ 115

Expanding (1) parametrically produces the system of equations

20 — aCyCy = %cvcu (1)
w—bCSu = TCuSu (®)
20— ¢Sy = %Sv 9)

The substitution S, = 1/1 — C2 gives the following solution for C, from (9),

2
20
= l1- 1
¢ 1(c+%> (10

Similarly, (7) and (8) give the competing expressions for Cy,

2
Yo
e = (i) Y

respectively. Setting (11) and (12) equal to each other (squaring both) yields

2 2
Lo _m__ %
@+ T -9 "

and substituting C,, from (10) produces the first pleasing equation in this derivation:

2 2 2
Ty Yo 20
— + + —— =1 (14)
(a+2)2 (b+$)? (c+9)?

As pleasing as it is, (14) doesn’t handle the case where X¢ is the origin. Removing
the denominators returns

@ 2 a 2 0 o 2 o 2 o o 2 a 2 2
(b+3> (C‘i“z) x0+(a+a—> <C+—c‘) y0+(a+g> (b‘i‘g) 20
(8% 2 (8% 2 (8% 2
=(a+—) (b+—) (c+——)
a b c

which can easily be manipulated to yield (5) again.

116 & Geometry

¢ Observations <

Solving (1) requires finding the roots of the sixth-degree polynomial® (5). Many numeri-
cal methods exist for finding the roots of such polynomials (Press et al. 1988). However,
a few observations suggest a simple solution.

The first observation explains the six roots. For xg outside the ellipsoid, there is only
one point on the ellipsoid whose normal points toward xg3. However, there can be as
many as five other points whose surface normals point directly away from xg. This is
most easily demonstrated by reducing the problem to two dimensions, setting ¢ = a
and zg = 0.

Consider the parameters a = 1,b = 2, and the point xo = (5/4,1/4). Figure 1
illustrates the resulting ellipse and some of its surface normals. The four surface normals
intersecting xo are highlighted. The shaded region in the center indicates all points
intersecting four ellipse normals. Its boundary, called the evolute of the ellipse because
it is tangent everywhere to an ellipse normal (Millman and Parker 1977), indicates
points intersecting three ellipse normals. Points outside the evolute intersect two ellipse
normals.

For an ellipse, the evolute is the pinched superellipse

la:v|2/3 + ‘by|2/3 — |a2 o b2)2/3

in implicit form, or

2 _ 32 2_ .2
(a b cos® 8, u sin® 0)
a b

in parametric form (Spain 1957, p. 44). For an ellipsoid, the six intersecting surface
normals lie on a quadric cone (Spain 1960, §40), and its evolute is most likely a pinched
superellipsoid (Barr 1981).

The second observation simplifies the numerical solution. Figure 2 plots (5) as a
function of «. As this figure demonstrates, the solution graph is strictly decreasing with
decreasing slope beyond the largest root. Hence, Newton’s method, given a sufficiently
large initial point, will converge to the desired solution and swiftly compute the distance
to the ellipsoid.

The third observation finds an appropriate initial point for Newton’s method. Over-
estimating the distance and surface normal magnitude produces a value greater than
the maximum root. If xg is on or inside the ellipsoid, then the maximum root will be
zero or negative and an initial value of g = 0 suffices.

!One might assume that the gradient at xo points directly away from the closest point on the implicit
surface, which yields a quadratic solution (Lorensen 1993). While this is true for the sphere and other
natural quadrics, it does not generalize to their stretched versions. In particular, it is not true for
ellipsoids.

/.1 Distance to an Ellipsoid < 117

Figure 1. Ellipse and evolute. Dotted lines indicate extended normals to the ellipsoid, enveloping the
shaded evolute interior. The solid line segment indicates the only positive solution to (5), whereas the
dashed line segments indicate three negative solutions.

118 <& Geometry

20}

151

2 3 -2 -1 \
,5 S

Figure 2. The function in (5) as a function of . The rightmost root is the root of interest. There is a
double root at -1.

Otherwise xg is outside the ellipsoid and the initial point needs to satisfy

d(XQ, E)

0 =]

Certainly ||xo||, the distance to the origin, overestimates the distance to the ellipsoid.
Since the equation for the distance to an ellipsoid (5) is the same for both implicit and
parametric representations, consider the parametric surface normal (6). That function
for the normal is the same as the parametric function for an ellipsoid with principal
axes of radius 1/a,1/b, and 1/c! Therefore, ||n|| > min{l/a,1/b,1/c}, and a starting
value of

ap = ||xo|| max{a, b, c}

suffices.

This Gem originated with 10 sheets of hotel stationery from a conversation with Al
Barr and Jim Kajiya at SIGGRAPH ’92. As editor, Paul Heckbert originated Figure 1,
which forced the author to learn more analytic and differential geometry than he had
originally intended.

¢ Bibliography ¢

(Barr 1981) Alan H. Barr. Superquadrics and angle-preserving transformations. IEEE
Computer Graphics and Applications, 1(1):11-23, 1981.

/.1 Distance to an Ellipsoid ¢ 119

(Barr 1984) Alan H. Barr. Global and local deformations of solid primitives. Computer
Graphics, 18(3):21-30, July 1984.

(Hart 1993) John C. Hart. Sphere tracing: Simple robust antialiased rendering of
distance-based implicit surfaces. Technical Report EECS-93-015, School of EECS,
Washington State University, Jan. 1993. Appears in Jules Bloomenthal and Brian
Wyvill, Eds., SIGGRAPH 93 Course Notes #25, “Modeling, Visualizing and An-
imating Implicit Surfaces.”

(Lorensen 1993) William E. Lorensen. Geometric clipping using boolean textures. In
Proceedings of Visualization 93, pages 268-274. IEEE Computer Society Press,
Los Alamitos, CA, 1993.

(Millman and Parker 1977) Richard S. Millman and George D. Parker. Elements of
Differential Geometry. Prentice Hall, Englewood Cliffs, NJ, 1977.

(Press et al. 1988) William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C. Cambridge University Press,
New York, 1988.

(Spain 1957) Barry Spain. Analytical Conics. Pergamon Press, New York, 1957.
(Spain 1960) Barry Spain. Analytical Quadrics. Pergamon Press, New York, 1960.

1.2

Fast Linear Approximations of
Euclidean Distance in Higher
Dimensions

Yoshikazu Ohashi!

Cognex
Needham, MA
yoshi @cognex.com

¢ Distance Measures ¢

In the n-dimensional Euclidean space, the general distance metric L,, between two
points p = {Z1p, T2p, ..., Tnp} and ¢ = {T14,2q, ..., Tng} is defined by

n 1/m
Lm = <Z |.’Eip — CClq|m>

()

The two most frequently used metrics are the city block or Manhattan distance (for
m = 1), and the Fuclidean distance (m = 2), which is given by

n
Z Az? where Az = |zip — Tig
i

In many cases in computer graphics and machine vision applications, this distance
measure has to be evaluated repetitively and, moreover, accuracy is not required. Be-
cause the square root function takes a double type argument, a further speedup is
possible by avoiding a type conversion in the case of an integer argument such as pixel
(or voxel) positions.

In a previous article, Ritter discussed a fast linear approximation for 3D cases (Ritter
1990). This Gem is its extension to higher dimensions to find optimum coefficients,
¢i(i=1,2,...,n), of the following linear approximation to the Euclidean distance,

n
Lapproxzcl-AI1+02-A1’2+'-'+0n-AIn:Zci-AQZi

1Formerly at ARCO Research Center, Plano, Texas, where a part of this work was conducted.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

Macintosh ISBN 0-12-336156-7 120

I1.2 Fast Linear Approximations of Euclidean Distance in Higher Dimensions o 121

where the variables are sorted in descending order such that
Axy > Azxg > - Axy, 20

Without ordering, the error of the approximation is much larger. Sorting is O(nlogn),
and this approach is useful for a small n. The relative error of this approximation is
given by

¢ - Az

~[M]=

where u; = Ax;/\/>." Ax? is the ith axis component of a unit vector parallel to Ax.

$ Optimum Approximations ¢

Our goal is to find a set of coefficients c;(i = 1,2,...,n) such that

(o)

1>u>2u>--2up 20

n

Zci-ui—l

7

under the conditions

The summation Y7 ¢; - u;, which is a dot product of two vectors ¢ = {c1,c0,...,¢n}
and u = {u1,u2,...,Un}, is maximized when the two vectors are parallel and the max-
imum value is the length of the vector |c| = /227 c?. (Note that the antiparallel case
will not occur because L and Lapprox are non-negative.) The maximum can also occur
at the boundaries of the region bounded by 1 > uj > ug > --- > un > 0, Le.,

up = 1 and Ug=U3 =Ug =+ =Up =0
u =ug =1/v2 and U = Ug =+ = Up =

up = ug = ug = 1//3 and Ug=--=up, =0

up=ug=--=1up1=1/v/n—-1 and Uy, =0
U1=UQ:-":un_1=un:1/\/’l_‘L

Considering these (n+ 1) cases—one from the function maximum and n from bound-
ary conditions—we can explicitly express the relative error as

e(c1,ca, ..., cn) = max{leo|, le1], ., en|}

122 ¢ Geometry

Table 1. Optimum coefficients in linear approximation for Euclidean distance

Dimensions 2 3 4 5 6 7 8

max(e) 3.9% 6.0% 7.4% 8.4% 9.2% 9.8% 10.4%
c1 0.9604 0.9398 0.9262 0.9161 0.9081 0.9016 0.8961
ca 0.3978 0.3893 0.3836 0.3794 0.3762 0.3734 0.3712
c3 0.2987 0.2943 0.2912 0.2887 0.2866 0.2848
cq 0.2482 0.2455 0.2433 0.2416 0.2401
cs 0.2162 0.2144 0.2128 0.2115
cg 0.1938 0.1924 0.1912
c7 0.1769 0.1759
cs 0.1637

where

epg =

7
SLRE
%

€1=Cl—1

€2 = (icMﬂ) -1

€n = (Zn:cz/\/ﬁ> -1

i
Note that an error can be negative or positive and that there are (n+ 1) error equations
for the n-dimensional cases. For example, in 2D and 3D these errors are

2D 3D
60:\/6%4-0%—1 eo=\/c%+c§+c§—1
61261—1 61261—1

ez =(c1+c2)/V2-1 e2=(c1+c2)/V2—1
es = (c1+c2+c2)/V3—1
The optimum set of coefficients can be found as solutions for n simultaneous equations
leol = le1] = |e2] = --+ = |en|. (There are only n relationships among n + 1 error
equations.) The error surface for 2D is shown in Figure 1. The optimum solutions
through the eighth dimension are listed in Table 1.

¢ Computing Speed Enhancement ¢

In the original form of this linear approximation, floating point multiplication operations
are still required. Especially when variables are integers, the performance can be further

11.2 Fast Linear Approximations of Euclidean Distance in Higher Dimensions

Table 2. Comparison of 3D linear approximations for Euclidean distances

Constraints c1 co c3 max(e)
1. None 0.9398 0.3893 0.2987 6.0%
2.c =1 1 0.2968 0.2914 8.3%
3.c1=1, cg=c3 1 0.2941 0.2941 8.3%
4. cog =c3 0.9264 0.3872 0.3872 7.3%
5. fraction 15/16 3/8 9/32 7.2%
6. fraction, cz = c3 15/16 3/8 3/8 7.7%
7.2 fraction, ¢1 =1 1 11/32 1/4 8.7%
8.2 fraction, ¢; =1 1 5/16 1/4 9.8%
9. fraction, ¢ =1, c2 = c3 1 9/32 9/32 9.8%
10.2 unit fraction, ¢; =1, ¢z = c3 1 1/4 1/4 13.4%

2Coefficients suggested by Ritter (1990).

¢

123

improved by finding appropriate bit-shift operations. Even if variables are floating point
numbers, the following discussion can be applied with pre- and post-operations—i.e.,
making them integers after scaling up and changing back to floating point numbers after
scaling down (see Ritter’s pseudocode, p. 433). For the simplest 2D case, the optimum

solutions can be approximated by

c; = 0.11110113 = 0.9609 ~ 0.9604
cg = 0.01100115 = 0.3984 ~ 0.3978

Furthermore, ¢ is two’s complement of 0.00001015:

c1-z1 = (1.0 — 0.00001012) - 21 = x1- (x1>>5) - (x1>>7)

co - x2 = 0.01100119 - £90 = (x2>>2) + (X2>>3) + (X2>>6) + (X2>>7)

or ¢p - Ig = (£t>>2)+(t>>6) where t =

X2+ (xX2>>1)

With these coefficient approximations, the maximum relative error remains as low as

4.0% with a mean error of 2.4%.

Another way to improve computational speed is to make some coefficients equal at
the sacrifice of the approximation accuracy. By doing so, sorting of parameter z’s will
be faster, and a cross term c*x can be combined as c* (x+x') for a further savings
in the number of multiplication or bit-shift operations. Also, the largest coeflicient can
be set to unity to avoid multiplication or bit shifts for that term. Considering those

factors, typical 3D cases are summarized in Table 2.

124 ¢ Geometry

optimum point

e(0.9604,0.3978) = 0.039

e(q,c)= ch +c; —1

Figure 1. The maximum error is defined by three surfaces for the 2D case. The optimum (minimum

relative error) point is (0.9604, 0.3978), at which the relative error is 3.9%.

¢ Bibliography <

(Ritter 1990) Jack Ritter. A fast approximation to 3D Euclidean distance. In A. Glass-

ner, editor, Graphics Gems, pages 432-433. Academic Press, Boston, 1990.

1.3

Direct Outcode Calculation for
Faster Clip Testing

Walt Donovan Tim Van Hook

Sun Microsystems, Mail Stop 17-10 Silicon Graphics

1505 Salado Avenue 2011 N. Shoreline Bivd.
Mountain View, CA 94043 Mountain View, CA 94043-1389
donovan@eng.sun.com tvh@sgi.com

¢ Introduction <

This gem describes a method for calculating clip region outcodes directly from the
[EEE-standard floating point representation of the 2D or 4D vertex. This method uses
integer and logical operations and no conditional branches, and can be used as an
alternative to the obvious method when optimizing a software implementation of the
graphics pipeline.

The basic idea is to treat an IEEE floating point value as a two’s complement integer.
Since the IEEE representation is a sign-magnitude one, an absolute value is calculated
by zeroing the sign bit, and a condition code is calculated by subtracting the magnitudes.
Multiple condition codes are then assembled into an outcode.

This direct method performs more operations than the obvious method. However, the
overall performance of a software implementation of a graphics pipeline on superscalar
RISC processors is improved using the direct method. The lack of branches permits
more code to be correctly prefetched, and the integer-only nature of the direct method
permits the floating point unit to be used for other calculations. On one superscalar
RISC processor, for example, the time it takes to transform, clip check, and project a
4D vertex is reduced from about 80 clocks to about 50 clocks.

¢ |EEE Floating Point Review <

An IEEE floating point number (ANS 1985) consists of three fields: the sign bit s, the
exponent e, and the fraction f. Single-precision numbers use 8 bits to store e and 23
bits to store f; double-precision numbers use 11 and 52 bits, respectively. The sign bit s
is stored in the most significant bit, then the next most significant bit is the high-order
bit of e, and then the least significant bits store f, high order to low order. This is
illustrated in the following figure.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

125 Macintosh ISBN 0-12-336156-7

126 < Geometry

1 8 23

single precision s| e f

—I»
—I»-

msb Isb
1 11 52

double precision S e f

| |
msb Isb

Figure 1. |EEE single- and double-precision floating point formats. msb means most significant bit; Isb
least significant bit.

A single-precision number has a value determined by the following rules:

If e = 255 and f # 0, then the value is NaN (not a number) regardless of s.
If e = 255 and f = 0, then the value is (—1)%cc.

If 0 < e < 255, then the value is (—1)*2¢7127(1. 7).

If e=0 and f # 0, then the value is (—1)*27126(0.7).

If e =0 and f = 0, then the value is (—1)°0 (zero).

Ol W=

For double precision, the rules are:

1. If e = 2047 and f # 0, then the value is NaN (not a number) regardless of s.
2. If e = 2047 and f = 0, then the value is (—1)%cc.

3. If 0 < e < 2047, then the value is (—1)*2¢71023(1.f).

4. If e = 0 and f # 0, then the value is (—1)%271922(0.f).

5. If e = 0 and f = 0, then the value is (—1)°0 (zero).

Let a(x) be the number formed by concatenating the e and f fields of the non-NaN
floating point number z; e.g., a(x) = 223¢ + f for single precision. Let v(z) be the
integral value of the floating point number z; e.g., v(z) = 23's + 22%e + f for single
precision. Let s(i) be the sign bit of some integral value ¢; e.g., s(—1) = 1 and s(1) = 0.

First, if z < 0, then s(v(z)) = 1, and if > 0, s(v(z)) = 0, by definition.

It is easy to see by induction that |z| < |y| if and only if a(z) < a(y), with equality
implying equality. Thus, sign(z — y) = sign{a(z) — a(y)) for z,y > 0. The other cases
are of less interest to us; e.g., sign(x —y) = —1 for z < 0,y > 0 as long as a(z) + a(y)
doesn’t overflow into the sign bit. (The problem is that detecting the overflow case takes
more code than is worth doing.)

In the C language code that follows, we assume that single-precision floating point
(float) is used on 32-bit processors, where sizeof(long) = sizeof(float) = 4 8-bit

11.3 Direct Outcode Calculation for Faster Clip Testing < 127

bytes. We also assume that double-precision floating point is used on 64-bit processors,
and that sizeof(long) = sizeof(double) = 8 bytes there. Then the C code for direct
outcode calculation will work properly on either 32 and 64 bit processors.

¢ 2D Outcode Calculation ¢

The standard outcode calculation in C for the 2D vertex (z,y) against the clip window
with corners at (xmin, ymin) and (zmazx,ymaz) is (Foley et al. 1990, p. 116, function
CompOutCode)

outcode = 0;

if (x < xmin) outcode |= 1;
if (x > xmax) outcode |= 2;
if (v < ymin) outcode |= 4;
if (y » ymax) outcode |= 8;

where we use explicit constants to make the following clearer. We assume that
0 < zmin < zmax and 0 < ymin < ymazx, since negative clip windows are atypi-
cal of 2D graphics pipelines. Let us rewrite the first if test above

if (x < xmin)
as
if ((x < 0 && x < xmin) || (x >= 0 & x < xmin))
which is clearly equivalent. Now, since xmin > 0, we can simplify the above test to

if (((x < 0) I (x »>= 0 & x < xmin))

because r < 0 implies that z < zmin. Finally, we introduce the absolute value and
simplify further to

if ((x < 0) |l (abs(x) < xmin))
A similar sequence of steps for the z > zmax expression gives

if ((x »= 0) && {abs(x) > xmax))

as an equivalent calculation. We substitute y for x to get the equivalent expressions for
the ymin and ymaz if tests. The outcode calculation then becomes

outcode = 0;

if ((x < 0) 'l (abs(x) < xmin)) outcode |= 1;
if ((x >= 0) && (abs(x) > xmax)) outcode |= 2;
if ((y < 0) || (abs(y) < ymin)) outcode |= 4;
if ((y >= 0) && (abs(y) > ymax)) outcode |= 8;

We are now ready to translate the above to sign bit form. z < 0 is equivalent to
s(v(z)). ¢ > 0 is equivalent to s(—wv(z)), where — is the Boolean negation operator.
abs(xz) < xmin is equivalent to s(a(z) — v(zmin)). abs(z) > zmaz is equivalent to
s(v(zmax) — a(z)). Putting that all together, we get the following direct outcode cal-
culation. All variables except z and y are assumed declared as long.

128 < Geometry

¢ Code ¢

Direct Calculation of 2D Outcodes

/* number of bits in a word */
#define NUMBITS gizeof(long)*8

/* get the integral form of a floating point number */
#define v(x) *(long *) &(x)

/* get the sign bit of an integer as a value 0 or 1 */
#define s(x) (((unsigned long) (x)) »>> (NUMBITS-1))

/* get the absolute value of a floating point number in integral form */
#define a(x) ({x) & ~(1 << (NUMBITS-1)))

/* these values typically would be calculated once and cached */

ixmin = v{xmin);
ixmax = v{xmax) ;
iymin = v{ymin);
iymax = v{ymax);

/* get the bits and absolute value */

ix = v(x); ax = a(ix);
/* put the sign bit in bit 0 */
outcode = s(ix | (ax - ixmin));

/* put the sign bit in bit 1 */
outcode = s(~ix & (ixmax - ax)) << 1;

/* do the same for y */

iy = viy});
ay = a(iy);
outcode |= s{iy | (ay - iymin)) << 2;
outcode [= s({~iy & (iymax - ay)) << 3;

In a software 2D pipeline implementation, one would overlap the direct outcode

calculation with transforming the next 2D vertex.

¢ 4D (Homogeneous) Outcode Calculation <

In the most general form of homogeneous clipping, we accept points with negative as
well as positive w (see (Foley et al. 1990, pp. 271-278), which only discusses a 6-bit
outcode, but the extension to 7 bits is obvious). Other times, we accept points with
positive w only. The following algorithm uses a 7-bit outcode for the homogeneous

vertex (z,y, z,w) to implement both cases.
First, we show the computation of the 7-bit outcode.

113 Direct Outcode Calculation for Faster Clip Testing & 129

outcode = 0;

if (w < 0) outcode = 1;
if (abs(x) > abs(w))
if (x >= 0) outcode [= 2;
else outcode |= 4;
if (abs(y) > abs(w))
if (y »>= 0) outcode |= 8;
else outcode |= 16;
if (abs(z) > abs(w))
if (z »>= 0) outcode |= 32;
else outcode |= 64;

This computation assumes that the perspective view volume is completely symmetri-
cal and defined by —1 < x/w, y/w, z/w < 1, which saves some steps in the calculation.
Non-symmetric view volumes, e.g., 0 < 2z'/w < 1, can usually be made symmetric
with a simple scale and translate concatenated to the view transform. In the example,
z2=22 —1.

Given the 7-bit outcodes for each vertex, we digress a bit to show how to clip test
multiple vertices, e.g., a line or a triangle (in (Foley et al. 1990, pp. 113-114), trivial
reject occurs if the and_code is non-zero, and trivial accept occurs if the or_code is zero).

The following C pseudocode outlines the steps involved.

/* initialize */

and_code = -1;
or_code = 0;
/* for each vertex in the object ... */

({

/* calculate outcode for vertex */

/* accumulate clip status */
and_code &= outcode;
or_code |= outcode;

}

/* analyze the clip status for the entire object */

if (reject_negative_w) {
/* accept positive w only */
if (and_code)
trivial reject;
} else {
/* allow negative w */
if (and_code & 0xX7E)
trivial reject;

if (or_code == and_code)
trivial accept:
/* else object needs clipping */

130 & Geometry

The last test, for trivial accept, deserves an explanation. For the reject_negative w
case, an or_code of zero implies trivial accept, and the and_code will be zero at that
point (a non-zero code would have caused a trivial reject earlier). For the general case,
trivial accept can occur only if all vertices have the same w sign; thus either or_code is
zero (for positive w), which falls into the previous case, or or_code is 1 and and_code is
1 when all points have negative w. In all cases, the test for trivial accept is seen to be
equivalent to or_code = and_code.

We return to the outcode calculation now. Since it is already in absolute value form,
our work is simplified. In sign bit form, abs(x) > abs(w) is equivalent to s(a(w) —a(x)),
and x < 0 is equivalent to s(v(z)). The outcode calculation now has to generate one
of three values: 0, 1, or 2. This can be calculated by s(a(w) — a(z)) << s(v(z)), where
<< is the C binary left shift operator. If the first term is zero, the outcode is zero;
otherwise, the outcode is 1 if the second term is 0, or 2 otherwise.

The direct calculation of the 4D outcode is shown below. All variables except z,y, z,
and w are assumed declared as long.

¢ Code ¢

Direct Calculation of 4D QOutcodes

/* number of bits in a word */
#define NUMBITS sizeof (long) *8

/* get the integral form of a floating point number */
#define vi(x) *(long *) &(x)

/* get the sign bit of an integer as a value 0 or 1 */
#define s(x) (({unsigned long) (x)) >> (NUMBITS-1))

/* get the absolute value of a floating point number in integral form */

#define a(x) ((x) & ~{1 << (NUMBITS-1)))
iw = v(w)
abs_w = a(iw);
outcode = s(iw); /* 0 or 1 per w's sign */
ix = v(x);
diff = s(abs_w - a(ix));
t = s{ix) + 1;
outcode |= diff << t; /* 0, 2, or 4 or'd with outcode */
iy = viy);
diff = s(abs_w - a(iy));
t = s(iy) + 3;
outcode |= diff << t; /* 0, 8, or 16 or'd with outcode */

1.3 Direct Outcode Calculation for Faster Clip Testing < 131

iz = vi{z);

diff = s(abs_w - a(iz));

t = s(iz) + 5;

outcode |= diff << t; /* 0, 32, or 64 or'd with outcode */

In a software implementation of a 3D pipeline, one would interleave the preceding
outcode calculation with the transformation from projective coordinates to device co-
ordinates.

Note that the direct calculation above accepts the invalid homogeneous point
(0,0,0,0). One can avoid generating that value by disallowing degenerate projection
matrices. Alternatively, one could trap for an invalid operation exception in the device
coordinates transformation step and correct the outcode.

¢ Bibliography ¢
(ANS 1985) IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard
754-1985, IEEE, New York, 1985.

(Foley et al. 1990) James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics Principles and Practice, second edition. Addison-
Wesley, Reading, MA, 1990.

1.4

Computing the Area of a
Spherical Polygon

Robert D. Miller

1837 Burrwood Circle
E. Lansing, MI 48823

¢ Problem ¢

Given a spherical polygon described by its vertices, find its area. Each side of a spher-
ical polygon is a great circle arc on a sphere. Finding the area of a spherical polygon
has applications in cartography. The idea used in finding areas of planar triangles by
summing the signed areas of component triangles can be extended to apply to spherical
polygons. The method described here works for convex as well as concave spherical
polygons.

¢ Definitions <

Spherical polygons are defined by great circle arcs connecting points on the sphere. On
the Earth, these points are specified by latitude and longitude. Latitude is the angle,
in degrees, measured northward from the equator, the poles being at latitudes £90°.
Longitudes are measured in the east-west direction from a central meridian and have
values from 0° to 360°.

Areas on a canonical sphere (not just the Earth) are often measured in units of
spherical degree. Distances on this sphere are measured in degrees along the great circle
arc. One spherical degree is the area of a spherical triangle that has two sides that are
90° arcs and the third side is a 1° arc. The area of a hemisphere is then 360 spherical
degrees and the area of a sphere is 720 spherical degrees.

Spherical excess, in spherical degrees, is defined as the sum of the angles of a spherical
triangle minus 180°.

For a spherical polygon of n sides, the spherical excess, E, is generalized to:

E = Zinterior angles — ((n — 2) x 180°)

The area of a spherical polygon in spherical degrees is the spherical excess, E. (McCor-
mack 1931) has a simple proof. In more standard units of area, a spherical polygon with
spherical excess E on a sphere of radius 7 has an area of mr2E/180.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

Macintosh ISBN 0-12-336156-7 132

I1.4 Computing the Area of a Spherical Polygon & 133

B

Figure 1. Spherical triangle.

A spherical triangle with sides of a 90° arc and angles of 90° has a spherical excess
and an area of 90 spherical degrees. Eight such triangles cover a sphere: 8 x 90 spherical
degrees = 720 spherical degrees.

¢ Method ¢

For a spherical polygon, we will find its area, given the positions of each of its vertices.
These points are known by longitude, A, and latitude, ¢. Alternatively, we may know
these vertex positions from Cartesian coordinates. For a sphere of radius, 7, centered
at the origin, longitudes and latitudes are related to Cartesian coordinates by:

T = T COSPCoS A; Yy = rcos@sinA; z=rsin¢
r=x?+y?+ 2% A =tan"(y/z); ¢ =sin"1(z/r)

Using spherical triangles allows us to solve for the unknown quantities needed to
use the spherical excess to provide the spherical polygon’s area. Consider the spherical
triangle ABC as shown in Figure 1. Points and the vertex angles are denoted by upper-
case letters and the triangle’s edge lengths by lower case. For example, cos B is the
cosine of the angle formed by the two adjacent sides, a and c. B is chosen as a vertex at
the Earth’s pole, so that the angle at B is simply the difference in longitudes of points
A and C. Two sides are known from the complements of the latitudes of their vertices,
ie. a = 90°— latitude(C) and ¢ = 90°— latitude(A). The spherical cosine equation
(Van de Kamp 1967) yields the third side, given two sides and the included angle:

cosb = cosacosc +sinasinccos B

The haversine function is defined as havz = (1 — cosx)/2. The use of haversines
avoids computing arc cosines of values near £1. Rewriting the cosine formula in terms

134 & Geometry

of haversines is useful for improved numerical accuracy when computing a side of a
spherical triangle whose length is very small relative to the other two sides. These
situations arise frequently in distance calculations.

Using the haversine, we substitute 1 — 2hav x for cosz in the cosine equation:

1—2havb = cosacosc+sinasinc(l —2hav B)

= cosacosc+ sinasinc — 2sinasinchav B
Applying the trigonometric identity cos(z £ y) = cosx cosy F sinzsiny, we get:

1—2havb = cos(a—c)—2sinasinchavB so,

havb = hav(a—c)+sinasinchav B
To get the inverse haversine, we can use the arc sine since
1—2havb = cosb=1-— 28in2(9)
2

b
havb = sin? (5) , therefore

b = 2sin! \/hav(a —¢) +sinasinchav B

Having all three sides of the spherical triangle, we can use a formula from (Burington
1973) to obtain its spherical excess:

Bt o n (5 () 5°)

where s = £(a +b+c).

To find the area of a spherical polygon, use successive vertices, in pairs, to form
spherical triangles as shown in Figure 2. The shaded area is the spherical polygon
ABCD and the arcs show the four spherical triangles: APB, BPC, CPD, DPA. Each
spherical triangle will have the pole as one vertex to make the calculations convenient,
since vertices are given in terms of longitudes and latitudes. The polar angle is the
difference in longitudes of the other two vertices, and the two adjacent sides are the
complements of the latitudes of those vertices. The haversine formula applied to each
spherical triangle solves for the unknown side, which is one arc of the spherical polygon.
The spherical excess formula, above, provides the area for each spherical triangle.

In the case of plane polygons, the total area is the absolute value of the sum of the
signed areas of the component triangles. The spherical triangle formulas do not yield
signed areas, but when calculating the areas of the individual triangles, we will adopt a
convention: the sign of the spherical triangle will be the same as the sign of the difference

11.4 Computing the Area of a Spherical Polygon < 135
P

Figure 2. Spherical polygon.

of the longitudes of a pair of adjacent vertices. The area of the spherical polygon is the
absolute value of the sum of spherical excesses of each of the spherical triangles. The
area of a spherical polygon with many vertices may be found using this method. There is
one provision: in forming the spherical triangles, one must enumerate the vertex points
by traversing the polygon in a consistent direction, e.g., counterclockwise.

¢ Geographic Particulars <

If the sphere of interest is the Earth, we can use the mean radius r ~ 3956.5466 miles,
r? = 15,654,261 miles?, and the spherical excess, E, so the area S = E x 273,218.4
square miles, or S = E x 707,632.4 square kilometers.

When finding the area of a relatively small spherical polygon on the Earth, we should
take its slightly oblate shape into account. A better value for the Earth’s radius near
the latitudes of interest is the radius of the ellipsoid, r, at latitude ¢:

a

r(6) = -
1 —e2sin? ¢

where a is the Earth’s equatorial radius, ~ 3963.1905 miles, and e is the eccentricity

of the Earth’s ellipsoid. For Clarke’s Ellipsoid of 1866, €2 ~ 0.006768658. See (Snyder

1987).

& CCode ¢

#include <math.h>
static const double
HalfPi= 1.5707963267948966192313,
Degree= 57.295779513082320876798; /* degrees per radian */

136 ¢ Geometry

double Hav{double X)
/* Haversine function: hav(x)= (l-cos(x))/2. */
{

return (1.0 -cos{X))/2.0;

double SphericalPolyArea(double *Lat, double *Lon, int N)
/* Returns the area of a spherical polygon in spherical degrees,
given the latitudes and longitudes in Lat and Lon, respectively.
The N data points have indices which range from 0 to N-1. */
{
int J, K;
double
Laml, Lam2, Betal, Beta?2,
CosBl, CosB2, HavA,
T, A, B, C, S, Sum, Excess;

Sum= 0;
for (J= 0; J <= N; J++)
{

K= J+1;

if (J == 0)

{
Laml= Lon[J]; Betal= Lat{J]:
Lam2= Lon[J+17; Betal2= Lat[J+1];
CosBl= cos(Betal); CosB2= cos(Beta?2);

3

else

{
K= (J+1) % (N+1);

Laml= Lam2; Betal= Beta2;
Lam2= Lon[K]; Beta2= Lat[K];
CosBl= CosB2; CosB2= cos (Betal);
}
if (Laml != Lam2)

{
HavA= Hav (BetaZ-Betal) +CosBl*CosB2*Hav(Lam?2-Laml) ;
A= 2*asin{sqgrt (Havd));
B= HalfPi -Beta2;
C= HalfPi -Betal;
S= 0.5* (A+B+C) ;
T= tan(§/2) * tan((S-A)/2) * tan((S-B)/2) * tan((s-C)/2);

Excess= fabs(4*atan({sqrt (fabs(T))))*Degree;
if (Lam2 < Laml) Excess= -Excess;

Sum= Sum + Excess;
}

return fabs(Sum) ;
} /* SphericalPolyArea. */

1.4 Computing the Area of a Spherical Polygon < 137

¢ Bibliography <

(Burington 1973) Richard Stevens Burington. Handbook of Mathematical Formulas and
Tables. McGraw-Hill, New York, NY, 1973.

(McCormack 1931) Joseph P. McCormack. Solid Geometry. D. Appleton-Century, New
York, NY, 1931.

(Snyder 1987) John P. Snyder. Map Projections, A Working Manual. U.S. Geological
Survey, Washington, D.C., 1987.

(Van de Kamp 1967) Peter Van de Kamp. Principles of Astrometry. W. H. Freeman,
San Francisco, 1967.

Q1.5

The Pleasures of “Perp Dot”
Products

F. S. Hill, Jr.

Dept. of Electrical and Computer Engineering
University of Massachusetts

Amherst, MA 01003

hill@ecs.umass.edu

¢ Introduction <

While developing code to perform certain geometric tasks in computer graphics, we do
a lot of pencil-and-paper calculations to work out the relationships among the various
quantities involved. This often requires intricate manipulations involving individual
components of points and vectors, which can be both confusing and error-prone. It’s
a boon, therefore, when a concise and expressive notational device is developed to
“expose” key geometric quantities lurking beneath the surface of many problems. This
Gem presents two such geometric objects and develops some algebraic tools for working
with them. It then applies them to obtain compact explicit formulas for finding incircles,
excircles, corner rounding, and other well-known, messy problems.

We work in 2D and make explicit a notation for a vector that lies perpendicular to
a given vector. Figure 1 shows vector a = (a, ay). There are two vectors that have the
same length as a and are perpendicular to it; we give the name al (read as a perp) to
the one that is rotated 90° counterclockwise (ccw). It is easy to see that its coordinates
are

al = a(~01 é > = (—az,ay) (1)

formed by interchanging the components of a and negating the first. The “perp” symbol
1 may be viewed as the “rotate 90° ccw” operator applied to any vector a, whereupon

Figure 1. Vector a and its “perp.”’

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

Macintosh ISBN 0-12-336156-7 138

I1.5 The Pleasures of “Perp Dot” Products < 139

it enjoys the following easily proved properties:

Some Properties of a*

e Linearity: (a+ b)! = a* + b* and (4a)t = Aa'’ for any scalar A
e Length of at: |a| = |a*|

LL:(

aJ_)J_ — —a

e Applying L twice: a
(If we view a vector as a point in the complex plane, the perp operator is equivalent to
multiplying by i = v/—1, which makes these algebraic properties immediately apparent.)

As a simple example, we find the perpendicular bisector of the segment between
points A and B, which arises in such studies as fractal curves and finding the circle
through three points. The perpendicular bisector is the line that passes through the
midpoint between A and B (given by (A + B)/2) and is perpendicular to the vector
B — A. So using parameter t gives the compact parametric representation:

p(t) = %(A +B)+ (B— A)'t (2)

By itself the perp notation is merely congenial. Its power emerges when we use it in
conjunction with a second vector. Given 2D vectors a and b, what is the nature of the
dot product between a’ and b? Just work out the usual component form to obtain

Ay Gy

v (3)

which shows that it is the determinant of the matrix with first row a and second row b.
We call a' - b the perp-dot product of vectors a and b. Some of its evident properties
are

at

‘b =azby, - ayb, =

al - b=-bt-a, al - bt=a-b, al-a=0, and al-at =|a'|®=|al?

(Aside: Pursuing the analogy with complex numbers, a - b corresponds to the real part
of a*b where a* is the complex conjugate of a, and a* - b corresponds to the imaginary
part of a*b. These correspondences also make the above properties readily apparent.)

From well-known properties of the dot product we see in Figure 2a that a' - b has
the value |at||b|cos(¢), where ¢ is the angle between a- and b. Calling 6 the angle
from a to b (measured positive cew), then cos(¢) equals sin(6), so:

a’ - b = |a||b|sin(6) (4)

This dot product is positive if a® is less than 90° away from b (that is, if there is a left
turn from a to b), and is negative otherwise, as seen in Figure 2b. Thus it gives the
sense of the turn from the direction of a to that of b, which is a key ingredient in many
geometric algorithms. If al - b = 0, there is no turn, and a is parallel to b.

140 < Geometry

Figure 2. On the geometric nature of al . b.

To summarize:

e al.-b>0ifbisccw from a

e al - b<0ifbiscw from a

e al.b=0if a and b are parallel or antiparallel (linearly dependent)

The parallelogram determined by a and b has base |a| and altitude |b||sin(8)], so its
area is |a||b|| sin(#)|. Thus, using Equation 4,

l]a* - b| = area of parallelogram determined by a and b (5)

which is twice the area of the triangle with vertices (0,0), a, and b. Thus al - b is the
familiar signed area determined by a and b. It is the 2D analog of the vector cross
product ax b that could be applied if a and b were 3D vectors. (More precisely, its value
is seen from Equation 3 to be a x b - k, where k = (0,0, 1).) The power of the notation
a® - b in the 2D case is that it shows precisely how a signed area is “decomposed” into
a dot product of readily recognizable geometric objects in the problem at hand. We see
this power in action in the examples below.

Summary of Properties of a* - b

We list the principal properties of the perp-dot product at -b. When the perp-dot
product differs from the “regular” dot product a-b in an interesting way, we contrast
them.

e a’ . b is linear in a and in b individually
e at-b=—-bl.a versus a-b=b-a

e al.bl =a b, soal at=]al

e at.-a=0 versus a-a= |a|?

I1.5 The Pleasures of “Perp Dot” Products < 141

al -b = |a||b|sin(f) versus a-b = [a||b|cos(6)
(a" - b)* + (a-b)? = [a]’|b]?
la*

al - b is positive if and only if there is a ccw turn from a to b

- b| is the area of the parallelogram defined by a and b

¢ Example Applications of the Perp-Dot Product <

The first example reiterates some classic uses of signed area and just casts them in
terms of perp-dot products. For the subsequent examples, however, the perp-dot product
appears in more surprising ways and leads to compact, explicit expressions for a number
of geometric results. We present brief derivations of some of the formulas in order to
show how the perp-dot product can be manipulated and its properties exploited.

Example 1: Convexity and area of polygons

Consider the simple polygon P with vertices P; and edge vectors v; = P 1 — B;, for
i=1,...,N (where Py, is understood to equal P;). This polygon is convex if and
only if all turns from one edge vector to the next have the same sense. This rule is easily
stated in terms of the perp-dot product as:

P is convex iff all v;* “Viy1 = 0, or all Vit - vir1 <0

(Note: A more efficient convexity test is known that doesn’t require a priori knowledge
that P is simple; see e.g. (Moret and Shapiro 1991). It is also based on signed areas.)

Further, it is well known (e.g. (Goldman 1991, Hill 1990)) that to find the area of P
just add up the N signed areas of its “component triangles” (with vertices (0,0), P41,
and P;) and take the magnitude. In terms of perp-dot products:

N
1
area = 3 lzzl PZ-LH - P (area of polygon P) (6)

(Note that points appear in this expression where really only vectors should reside.
Consider P; as shorthand for the vector from (0,0) to P, and similarly for P2 ,.)

Example 2: Find the intersection of two lines

The task of finding the intersection of two lines arises often in clipping and hidden line
removal algorithms. Let the first line have parametric representation A + at, so that
it passes through point A with direction a. Similarly, the second line passes through

142 < Geometry

a)

Figure 3. Finding the perpendicular projection of ¢ onto a.

point B in direction b, and so has parametric representation B + bu. We seek values
of the parameters t and u that make these points coincide: A 4+ at = B + bu. Calling
B — A = ¢, we must solve

at = c + bu (7)

which gives a set of two equations in the two unknowns ¢ and w. At this point one
usually writes out the two equations in terms of components such as b, and ay, and
invokes Cramer’s rule. But the perp-dot product provides a much more direct route.
Just form the dot product of both sides of the equation with b'. Since b+ - b = 0, this
eliminates the bu term and yields (b* - a)t = b - ¢, whereupon

(8)

as long as b+ -a # 0; i.e., as long as b and a are not parallel. Hence the point of
intersection is given explicitly by

bt ¢
bl-a

A+ a (point of intersection) (9)

(Note: For lines in 3D space the explicit expression for ¢ is more complex (Goldman
1990a): t = (c x b) - (a x b)/|a x b|2.)

Example 3: Resolving a vector and orthogonal projections

The previous example is actually a special case of a more general problem: that of
resolving a vector into the proper linear combination of two other vectors. (For instance,
find “weights” R and S such that (12,9) = R(4,—6) + S(2,7).) In general, given three
2D vectors a, b, and ¢ as shown in Figure 3a, where a and b are not parallel (a' - b # 0),
we seek R and S that solve ¢ = Ra+ Sb.

11.5 The Pleasures of “Perp Dot” Products <> 143

First take dot products of both sides with b to obtain R, and then with al to obtain
S.

bt -c al-c

a+ b ¢ resolved into a and b 10
LAt () (10)
This resolves ¢ explicitly into the required portion “along” a and the required portion
“along” b. It’s just Cramer’s rule, of course, but written in a form that avoids dealing
with individual components of the vectors involved. Note that it can be written in the

symmetrical form:

CcC =

(a* -b)c+ (bt -clat(ct-a)b=0 (relation between any three 2D vectors) (11)

which is true for any three 2D vectors a, b, and c, even when some are parallel or even
0. This form is easily memorized, since each term involves a, b, and c in cyclic order,
.--b — ¢ — a — b, and the three combinations appear once each. The truth of
Equation 11 is obvious by dotting it with your choice of at, bt or ct.

As a special case of resolving one vector into two others, we often want the orthog-
onal projection of a vector c onto a given vector a, as pictured in Figure 3b. But this
is equivalent to resolving c into a portion along a and a portion perpendicular to a, so
just set b = at in Equation 10, and use some of the properties summarized above to
obtain .

ac a-c_|) n
c= Wa + Wa (c resolved into a and a—) (12)

The first term is the desired projection, and the second term gives the error term
explicitly and compactly. This also immediately yields a formula for the distance from a
point to a line. In Figure 3b the relevant point is C, and the line is A+ at. The distance
d is just the length of the second term in Equation 12:

at - (C — A) N

d=
EIR

i
(%) (C - A)' (distance from C' to the line A + at) (13)

which has an appealing simplicity in terms of the unit vector in the direction of at.

Example 4: Finding the excircle (and nine-point circle)

It is often of interest to locate the center S of the unique circle (called the excircle or
circumcircle) that passes through three given points. Previous Gems (Goldman 1990b,
Lopez-Lopez 1992) have offered closed forms for S. We derive a very simple one below,
making ample use of the perp-dot product.

144 < Geometry

a) positive orientation b) negative orientation

A B

Figure 4. Orientation of triangles.

This and subsequent problems are based on a triangle, so we establish some notation
for a triangle’s ingredients. Figure 4 shows two triangles having vertices A, B, and C.
The edges are labeled as vectors: side a emanates from A toward B, b from B toward
C, etc., cyclically. In Figure 4a there is a ccw turn from each vector to the next (e.g.,
al-b > 0, etc.) so the triangle has positive orientation and its signed area at-b/2is
positive. The triangle in Figure 4b has negative orientation, since there is a cw turn
from a to b (al - b < 0), and its signed area a* - b/2 is negative. It is important that
the formulas we develop below be correct for either orientation of the triangle involved,
since a designer interacting with a CAD tool might specify its edges in different orders
and directions at different moments.

Using either triangle of Figure 4, S must lie on the perpendicular bisector of each
edge of triangle ABC. As stated above, the perpendicular bisector of AB is given
parametrically by (4 + B)/2 + att, and that of AC by (A + C)/2+ ctu. Point S lies
where these meet, at the solution of: att = b/2 + cu. Again take the dot product of
both sides, this time with ¢, to obtain t = 1/2(b - ¢)/(at - ¢) so the center S is given
by the simple explicit form:

1 b-
S=A+-(a+ ——al) (14)
2 a--c
The radius of the excircle follows as the length of § — A:
b- 2
radius = % <ai .cc> +1 (15)

A similar version of S may be obtained based on edges AB and BC, and a third
version can be based on AC and BC. It’s a good exercise to obtain a form for S that
is symmetrical in the points A, B, and C by averaging the three versions.

The exquisite nine-point (Feuerbach) circle contained in any triangle T' passes
through nine key points: the midpoints of the sides, the feet of the three altitudes,
and the midpoints of the lines joining each vertex to the intersection of the altitudes

11.5 The Pleasures of “Perp Dot” Products <> 145

(Coxeter 1969). So it’s just the excircle of the midpoint triangle M defined by the three
midpoints of T'. To find its center N apply Equation 14 with appropriate substitutions.
The sides of M are parallel to those of T itself, so the result is very similar to Equation
14. It’s a useful exercise to show that the center lies at

1 b - C _j_

Z(a+aL-ca)

N=3(B+0)- (16)

and that its radius is one half of the value cited in Equation 15.

Example 5: Finding the incircle

For completeness we mention a similar task: locating the center of the incircle (or
inscribed circle) of a triangle. The incircle just touches each of the three sides, so it
also locates the circle tangent to three given lines. Its center I lies where the three
angle bisectors of the triangle meet. The angle bisector at vertex A of either triangle
in Figure 4 has direction m = & — &, where the ~ symbol denotes that the vector has
been normalized to unit length; i.e. & = a/|al. Similarly, the angle bisector at B has
direction n = b — a. Finding the intersection as before, we obtain

Iy
I=A+>—2m (17)
In—-m

Its radius is found as the distance from I to any of the three sides. This is easy to find
explicitly, using Equation 13.

(18)

Example 6: Drawing rounded corners

A more challenging geometric problem is the following: given three points A, B, and C,
and a distance r, draw the rounded curve shown in Figure 5a. It consists of a straight line
from A toward B that blends smoothly into a circular arc of radius r, finally blending
into a straight line to C. (It is implemented as the arcto operator in PostScript.)

The hard part is finding the center E of the circle (see Figure 5b) and the precise
points D and F' where the line blends with the arc. (The figure shows the case where
there is a right turn from a to b.) This becomes considerably easier when the perp-dot
product is used. As before, the angle bisector at B is given parametrically by B + nu
where n = b — & for unit vectors b and a. E lies on the angle bisector at a distance

146 < Geometry

a)

Figure 5. Drawing rounded corners.

s(t)

Figure 6. Finding points along the arc.

r from the line AB. Using appropriate ingredients in Equation 13 and simplifying the
resulting expression, u must equal v = r/|n - at| =r/ |b-al| so E is given explicitly
by:
(b—a)r

E=B+%— (19)
When there is a rlght turn from a to b (so bt a >0 as in the figure), D and F are
given by D = E + rat, and F = E + rbt. Otherwise 41 and b+ point in the opposite
directions. We capture both cases with the expression D = E + sgn(b* - a)atr and
F = E + sgn(bt - a)b’r, where sgn(.) means the sign of its argument, +1 or —1.

To find points along the arc without recourse to awkward trigonometric functions,
consider the point w(t) that lies a fraction t of the way from D to F' (see Figure 6),
given by w(t) = D(1 —t) + Ft. The corresponding point s(t) on the arc is at distance
r along the line from E to w(t), and so is given by s(t) = E + r(w(t) — E)/|w(t) — E|.

I1.5 The Pleasures of “Perp Dot” Products < 147

Suitable manipulations simplify this to:

al + (bl —at)

0= Ereno) G e

(20)

The arc is drawn by making small increments dt in t, and drawing a line between
successive values of s(t), as suggested by the pseudocode:

moveto (A
for(t =
(

lineto (C

t <= 1; t += dt) lineto(s(t));

)
0;
) ;

Although equal increments dt in ¢ do not produce arc fragments of equal length, a
smooth arc is drawn if dt is small.

¢ Conclusion <

We use vectors all the time in pencil-and-paper calculations while developing algorithms
for computer graphics. They allow compact manipulations of geometric quantities, often
without resort to coordinates. For some problems one can further delay the use of
coordinates by giving a name a’ to one of the vectors perpendicular to a given vector
a. When such a vector is used in a dot product, the result has useful algebraic and
geometric properties equivalent to the signed area of a triangle. Seeing signed area
exposed as a dot product between readily interpreted vectors makes otherwise messy
formulas more intelligible. In addition, Cramer’s rule for solving vector equations arises
simply by taking the dot product of both sides of the equation with the proper vector.

¢ Bibliography <
(Coxeter 1969) H. M. S. Coxeter. Introduction to Geometry. J. Wiley, New York, 1969.

(Goldman 1990a) Ronald Goldman. Intersection of two lines in three-space. In
A. Glassner, editor, Graphics Gems I, page 304. Academic Press, Boston, 1990.

(Goldman 1990b) Ronald Goldman. Triangles. In A. Glassner, editor, Graphics Gems
I, pages 20-23. Academic Press, Boston, 1990.

(Goldman 1991) Ronald Goldman. Area of planar polygons and volume of polyhedra.
In James Arvo, editor, Graphics Gems II, pages 170-171. Academic Press, Boston,
1991.

(Hill 1990) Francis S. Hill, Jr. Computer Graphics. Macmillan Publishing Co., New
York, 1990.

148 < Geometry
(Lopez-Lopez 1992) F. J. Lopez-Lopez. Triangles revisited. In D. Kirk, editor, Graphics
Gems I1I, pages 215-218. Academic Press, Boston, 1992.

(Moret and Shapiro 1991) B. Moret and H. Shapiro. Algorithms from P to NP. Ben-
jamin Cummings, Reading, MA, 1991.

4
3
:
]
:
z;
g
E
§

Q1.6

Geometry for N-Dimensional
Graphics

Andrew J. Hanson

Department of Computer Science
Indiana University

Bloomington, IN 47405
hanson@cs.indiana.edu

¢ Introduction <

Textbook graphics treatments commonly use special notations for the geometry of two
and three dimensions that are not obviously generalizable to higher dimensions. Here
we collect a family of geometric formulas frequently used in graphics that are easily
extensible to N dimensions as well as being helpful alternatives to standard 2D and 3D
notations. '

What use are such formulas? In mathematical visualization, which commonly must
deal with higher dimensions—four real dimensions, two complex dimensions, and so
forth—the utility is self-evident (see, e.g., (Banchoff 1990, Francis 1987, Hanson and
Heng 1992b, and Phillips et al. 1993)). The visualization of statistical data also fre-
quently utilizes techniques of N-dimensional display (see, e.g., (Noll 1967, Feiner and
Beshers 1990a, Feiner and Beshers 1990b, Brun et al. 1989, and Hanson and Heng
1992a)). We hope that publicizing some of the basic techniques will encourage further
exploitation of N-dimensional graphics in scientific visualization problems.

We classify the formulas we present into the following categories: basic notation
and the N-simplex; rotation formulas; imaging in N dimensions; N-dimensional hy-
perplanes and volumes; N-dimensional cross-products and normals; clipping formulas;
the point-hyperplane distance; barycentric coordinates and parametric hyperplanes; and
N-dimensional ray-tracing methods. An appendix collects a set of obscure Levi-Civita
symbol techniques for computing with determinants. For additional details and insights,
we refer the reader to classic sources such as (Sommerville 1958, Coxeter 1991, Hocking
and Young 1961, Banchoff and Werner 1983, and Efimov and Rozendorn 1975).

¢ Definitions — What Is a Simplex, Anyway? ¢

In a nutshell, an N-simplex is a set of (N 4 1) points that together specify the simplest
non-vanishing N-dimensional volume element (e.g., two points delimit a line segment in

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

149 Macintosh ISBN 0-12-336156-7

150 ¢ Geometry

1 2 3 4

Figure 1. 2D projections of simplexes with dimensions 1-4. An N-simplex is defined by (N + 1) linearly
independent points and generalizes the concept of a line segment or a triangular surface patch.

1D, 3 points a triangle in 2D, 4 points a tetrahedron in 3D, etc.). From a mathematical
point of view, there are lots of different N-dimensional spaces: here we will restrict
ourselves to ordinary flat, real Euclidean spaces of N dimensions with global orthogonal
coordinates that we can write as

7= (z,y,2,...,w)

or more pedantically as
X = (:1;(1),9:(2),36(3), e ,x(N))

We will use the first, less cumbersome, notation whenever it seems clearer.

Our first type of object in N dimensions, the 0-dimensional point X, may be thought
of as a vector from the origin to the designated set of coordinate values. The next type
of object is the 1-dimensional line, which is determined by giving two points (o, T1);
the line segment from o to & is called a 1-simplex. If we now take three noncollinear
points (&g, 1, T2), these uniquely specify a plane; the triangular area delineated by
these points is a 2-simplez. A 3-simplex is a solid tetrahedron formed by a set of four
noncoplanar points, and so on. In Figure 1, we show schematic diagrams of the first few
simplexes projected to 2D.

Starting with the (N + 1) points (%o, 1, 2, ...,Zn) defining a simplex, one then
connects all possible pairs of points to form edges, all possible triples to form faces,
and so on, resulting in the structure of component “parts” given in Table 1. The next
higher object uses its predecessor as a building block: a triangular face is built from
three edges, a tetrahedron is built from four triangular faces, a 4-simplex is built from
five tetrahedra.

The general idea should now be clear: (N + 1) linearly independent points define
a hyperplane of dimension N and specify the boundaries of an N-dimensional coordi-
nate patch comprising an N-simplez (Hocking and Young 1961). Just as the surfaces
modeling a 3D object may be broken up (or tessellated) into triangular patches, N-
dimensional objects may be tessellated into (N — 1)-dimensional simplexes that define
their geometry.

11.6 Geometry for N-Dimensional Graphics < 151

Table 1. Numbers of component structures making up an N-simplex. For example, in 2D, the basic
simplex is the triangle with three points, three edges, and one 2D face

Dimension of Space
Type of Simplex N=1[N=2[N=3[N=4].. | N
Points (0D) 2 3 4 5 <N1+1>:N+1
Edges (1D simplex) 1 3 6 10 N; 1
Faces (2D simplex) 0 1 4 10 N;_ !
Volumes (3D simplex) 0 1 5 N4+ !
(N — 2)D simplex (]]zti)
(N = 1)D simplex (N;1 =N+1
ND simplex 1 (xii):l

¢ Rotations <

In N Euclidean dimensions, there are (];7) = N(N — 1)/2 degrees of rotational

freedom corresponding to the free parameters of the group SO(N). In 2D, that means
we only have one rotational degree of freedom given by the angle used to mix the x and y
coordinates. In 3D, there are three parameters, which can be thought of as corresponding
either to three Euler angles or to the three independent quaternion coordinates that
remain when we represent rotations in terms of unit quaternions. In 4D, there are six
degrees of freedom, and the familiar 3D picture of “rotating about an axis” is no longer
valid; each rotation leaves an entire plane fixed, not just one axis.

General rotations in N dimensions may be viewed as a sequence of elementary ro-
tations. Each elementary rotation acts in the plane of a particular pair, say (¢,7), of
coordinates, leaving an (N — 2)-dimensional subspace unchanged; we may write any
such rotation in the form

20 = 20cosf 2 sing
20— :}:x(i) sin@ + 29 cos 6
2% = 2 (k#£4,j)

152 < Geometry

Image §(1)
6(1) N
X
.. __________
u |
Camera
Ul ‘ Origin
X * g
H/f_/
(N)
d

(N)

Figure 2. Schematic view of the projection process for an N-dimensional pinhole camera.

It is important to remember that order matters when doing a sequence of nested rota-
tions; for example, two sequences of small 3D rotations, one consisting of a (2, 3)-plane
rotation followed by a (3, 1)-plane rotation, and the other with the order reversed, will
differ by a rotation in the (1,2)-plane. (See any standard reference such as (Edmonds
1957).)

We then have a number of options for controlling rotations in N-dimensional Eu-
clidean space. Among these are the following:

e (i,j)-space pairs. A brute-force choice would be just to pick a sequence of (3, j)
planes in which to rotate using a series of matrix multiplications.

e (i,7,k)-space triples. A more interesting choice for an interactive system is to
provide the user with a family of (i, j, k) triples having a 2D controller like a mouse
coupled to two of the degrees of freedom, and having the third degree of freedom ac-
cessible in some other way—with a different button, from context using the “virtual
sphere” algorithm of (Chen et al. 1988), or implicitly using a context-free method
like the “rolling-ball” algorithm (Hanson 1992). The simplest example is (1,2,3)
in 3D, with the mouse coupled to rotations about the x-axis (2,3) and the y-axis
(3,1), giving z-axis (1,2) rotations as a side effect. In 4D, one would have four
copies of such a controller, (1,2,3), (2,3,4), (3,1,4), and (1,2,4), or two copies
exploiting the decomposition of SO(4) infinitesimal rotations into two independent

copies of ordinary 3D rotations. In N dimensions, () sets of these controllers

3
(far too many when N is large!) could in principle be used.

¢ N-Dimensional Imaging <

The general concept of an “image” is a projection of a point & = (ac(l), @ . ,m(N))

from dimension N to a point # of dimension (N — 1) along a line. That is, the image of

1.6 Geometry for N-Dimensional Graphics < 153

— |

far
far

far ~

near near near

Figure 3. Qualitative results of perspective projection of a wire-frame square, a cube, and a hypercube
in 2D, 3D, and 4D, respectively.

a 2D world is a projection to 1D film, 3D worlds project to 2D film, 4D worlds project
to 3D film, and so on. Since we can rotate our coordinate system as we please, we
lose no generality if we assume this projection is along the Nth coordinate axis. An
orthographic or parallel projection results if we simply throw out the Nth coordinate
™) of each point. A pinhole camera perspective projection (see Figure 2) results when,
in addition, we scale the first (N — 1) coordinates by dividing by (dy —z™))/ fn, where
dy is the distance along the positive Nth axis to the camera focal point and fy is the
focal length. One may need to project this first image to successively lower dimensions
to make it displayable on a 2D graphics screen; thus a hierarchy of up to (N — 2)
parameter sets {(fn,dn), .-, (f3,d3)} may be introduced if desired.

In the familiar 3D case, we replace a vertex (z, y, z) of an object by the 2D coordinates
(zf/(d - 2),yf/(d — z)), so that more distant objects (in the negative z direction) are
shrunk in the 2D image. In 4D, entire solid objects are shrunk, thus giving rise to
the familiar wire-frame hypercube shown in Figure 3 that has the more distant cubic
hyperfaces actually lying inside the projection of the nearest cube.

As we will see later when we discuss normals and cross products, the usual shading
approaches allow only (N — 1)-manifolds to interact uniquely with a light ray. That is,
the generalization of a viewable “object” to N dimensions is a manifold of dimension
(N — 1) that bounds an N-dimensional volume; only this boundary is visible in the
projected image if the object is opaque. For example, curves in 2D reflect light toward
the focal point to form images on a “film line”; surface patches in 3D form area images
on a 2D film plane; volume patches in 4D form volume images in the 3D film volume,
and so on. The image of this (N — 1)-dimensional patch may be ray traced or scan
converted. Objects are typically represented as tessellations that consist of a collection
of (N —1)-dimensional simplexes; for example, triangular surface patches form models of
the visible parts of 3D objects, while tetrahedral volumes form models of the visible parts
of 4D objects. (An interesting side issue is how to display meaningful illuminated images
of lower-dimensional manifolds—Ilines in 3D, surfaces and lines in 4D, for example; see
(Hanson and Heng 1992b) for further discussion.)

154 < Geometry

Figure 4. The line from Z(to 1 whose points obey the equation 1 - (:E' - a':'o) = (. The constant c is
just i - Zp.

¢ Hyperplanes and Volume Formulas <

Implicit Equation of a Hyperplane. In 2D, a special role is played by the single linear
equation defining a line; in 3D, the analogous single linear equation defines a plane. In
N-dimensions, the following implicit linear equation describes a set of points belonging
to an (N — 1)-dimensional hyperplane:

i (F—30) =0 (1)

Here Z(is any point on the hyperplane, and conventionally i - i = 1. The geometric
interpretation of this equation in 2D is the 1D line shown in Figure 4. In general, n
is a normalized unit vector that is perpendicular to the hyperplane, and 1 - Ty = ¢ is
simply the (signed) distance from the origin to the hyperplane. The point Z. = ch is
the point on the hyperplane closest to the origin; the point closest to some other point
PisZ,=P+n{na- (% — P)}.

Simplex Volumes and Subvolumes. The volume (by which we always mean the
N-dimensional hypervolume) of an N-simplex is determined in a natural way by a
determinant of its (N + 1) defining points (Sommerville 1958):

3y X2 -+ TN X0
1 o Y2 - YN Yo
VN = N det | oo : (2)
wp w2 -+ WN U
i 1 | R 1 1]

The bottom row of 1’s in Equation (2) corresponds to the familiar homogeneous coor-
dinate used with 4 x 4 projection matrices in 3D graphics. We will attempt to convince
the reader in a moment that disastrous sign inconsistencies result unless the global
origin Zy of the N-simplex’s coordinate system is in the last column as shown.

11.6 Geometry for N-Dimensional Graphics < 185

The expression for the volume in Equation (2) is signed, which means that it implic-
itly defines the N-dimensional generalization of the right-hand rule typically adopted
to determine triangle orientation in 3D geometry. For example, we observe that if
%o = (0,0,...,0) is the origin and we choose Z; = (1,0,...,0), &> = (0,1,0,...,0),
and so on, the value of the determinant is +1. If we had put Zy in the first row in
Equation (2), the sign would alternate from dimension to dimension! We will exploit
this signed determinant shortly to define N-dimensional normal vectors, and again later
to formulate N-dimensional clipping.

First, we use the standard column-subtraction identity for determinants to reduce
the dimension of the determinant in Equation (2) by one, expressing it in a form that
is manifestly translation-invariant:

(x1 —x0) (22 —20) -+ (TN —T0) o
(11 —v) (y2—w) - (YN —%) %Yo
VN = N det : .
. (w1 —wp) (w2 —wo) -+ (wny—wo) wo
o 0 - 0 1
1 Y1 — Yy Y2 — Yo YN — Yo
= N det ° . (3)
[(w1 —wo) (wp—wpy) -+ (wn —wo)

These formulas for Viy can be intuitively understood as generalizations of the familiar
3D triple scalar product

[(Z1 — Zo) x (T2 — To)] - (T3 — Zo)

which gives the volume of the parallelepiped with sides ((F1 — Zo), (2 — %o), (3 — Lo)).
The corresponding tetrahedron with vertices at the points (Zo, Z1, 2, ¥3) has one-sixth
the volume of the parallelepiped. The analogous observation in N dimensions is that
the factor of 1/N! in Equation (3) is the proportionality factor between the volume
of the N-simplex and the volume of the parallelepiped whose edges are given by the
matrix columns.

Invariance. The volume determinant is invariant under rotations. To see this ex-
plicitly, let |X| be the matrix in Equation (3) and let |R| be any orthonormal rotation
matrix (i.e., one whose columns are of unit length and are mutually perpendicular, with
unit determinant); then, letting |X'| = |R| - | X|, we find

det | X'| = det(|R| - | X|) = det|R|det | X| = det | X| = N!Vy

156 & Geometry

since the determinant of a product is the product of the determinants.
A manifestly translation and rotation invariant form for the square of the volume
element is

(VW) = <-1—)2det X" X|

N!
v(1,1) v(1,2) --- v(1,N)
2 v(2,1 v(2,2) --- v(2,N
:<%>det (:) (:)-. (:) @
v(N,1) v(N,2) --- ov(N,N)

where v(i,j) = (Z; — %o) - (£ — @o)-

This invariant form is not presented as an idle observation; we now exploit it to show
how to construct volume forms for subspaces of N-dimensional spaces, for which the
defining vertices of the desired simplex cannot form square matrices!

The trick here is to note that while Vi, for K < N, is not expressible in terms of a
square matrix of coordinate differences the way Vy is, we may write Vi as the determinant
of a square matrix in one particular coordinate frame, and multiply this matrix by its
transpose to get a form such as Equation (4), which does not depend on the frame. Since
the form is invariant, we can transform back to an arbitrary frame to find the following
expression for Vi in terms of its K basis vectors (& — Zo) of dimension N:

F & - 7
(Vi)? = (%)2@ TN f—d f-d - dxk -0
LCE’K.—”O
T ou(l,1) v(l,2) v(1, K)
- () | YT TR g
| oK. 1) w(K,2) - (K K)

That is, to compute a volume of dimension K in N dimensions, find the K independent
basis vectors spanning the subspace, and form a square K x K matrix of dot products
related to V]% by multiplying the N x K matrix of column vectors by its transpose on
the left. When K = 1, we see that we have simply the squared Euclidean distance in NV
dimensions, v(1,1) = (Z1 — Zo) - (£1 — Zo).

¢ Normals and the Cross Product ¢

A frequently asked question in N-dimensional geometry concerns how to define a normal
vector as a cross product of edges for use in geometry and shading calculations. To begin

11.6 Geometry for N-Dimensional Graphics < 157

with, you must have an (N — 1)-manifold (a line in 2D, a surface in 3D, a volume in
4D) in order to have a well-defined normal vector; otherwise, you may have a normal
space (a plane, a volume, etc.). Suppose you have an ordered set of (N —1) edge vectors
(fx — o) tangent to this (N — 1)-manifold at a point Zo; typically these vectors are
the edges of one of the (N — 1)-simplexes in the tessellation. Then the normal N at the
point is a generalized cross product whose components are cofactors of the last column
in the following (notationally abusive!) determinant:

N = NX+Ny+Nz+- -+ Ny

(LEl — Io) (132 — CL‘()) tee (.Z‘N_l — .I'()))A(
(y1—w) (y2—w) - (Unv-1—%) ¥

= det| (s1—20) (22—20) - (anv-1—20) 2 (6)
(w1 — ’LU()) (w2 — wo) tee (wN_1' — wo) w

As usual, we can normalize using ||N||, the square root of the sum of the squares of the
cofactors, to form the normalized normal i = N/||N|. A quick check shows that if the
vectors (Z — Fg) are assigned to the first (N — 1) coordinate axes in order, this normal
vector points in the direction of the positive Nth axis. For example, in 2D, we want
the normal to the vector (z; — o, y1 — %) to be N = (—(y1 — %), (z1 — o)) so that
a vector purely in the z direction has a normal in the positive y direction; placing the
column of unit vectors (X,¥,2,...,W) in the first column fails this test. The 3D case
can be done either way because an even number of columns are crossed! It is tempting
to move the column of unit vectors to the first column instead of the last, but one must
resist: the choice given here is the one to use for consistent behavior across different
dimensions!
The qualitative interpretation of Equation (6) can now be summarized as follows:

e 2D: Given two points (Zo,Z1) determining a line in 2D, the cross product of a
single vector is the normal to the line.

e 3D: Given three points defining a plane in 3D, the cross product of the two 3D
vectors outlining the resulting triangle is the familiar formula (Z; — Zo) x (Z2 — Zo)
for the normal N to the plane.

¢ 4D: In four dimensions, we use four points to construct the three vectors (Z; —
Zo), (2 — o), (3 — Tp); the cross product of these vectors is a four-vector that
is perpendicular to each vector and thus is interpretable as the normal to the
tetrahedron specified by the original four points.

From this point on, the relationship to standard graphics computations should be evi-
dent: If, in N-dimensional space, the (/N — 1)-manifold to be rendered is tessellated into
(N — 1)-simplexes, use Equation (6) to compute the normal of each simplex for flat

158 <& Geometry

shading. For interpolated shading, compute the normal at each vertex (e.g., by averaging
the normals of all neighboring simplexes and normalizing, or by computing the gradient
of an implicit function specifying the vertex). Compute the intensity at a point for
which you know the normal by taking the dot product of the appropriate illumination
vector with the normal (e.g., by plugging it into the last column of Equation (6)).
If appropriate, set the dot product to zero if it is negative (pointing away from the
light). Back face culling, to avoid rendering simplexes pointing away from the camera,
is accomplished in exactly the same way: plug the camera view vector into the last
column of Equation (6) and discard the simplex if the result is negative.

Dot Products of Cross Products. We conclude this section with the remark that
sometimes computing the dot product between a normal and a simple vector is not
enough; if we need to know the relative orientation of two face normals (e.g., to de-
termine whether a finer tessellation is required), we must compute the dot products of
normals. In principle, this can be done by brute force directly from Equation (6). Here
we note an alternative formulation that is the N-dimensional generalization of the 3D
formula for the decomposition of the dot product of two cross products; in the 3D case,
if one normal is given by the cross product X = A x B and the other by Y =C x D,
we can write

X VY=(AxB)- (CxD)y=(A-C)B-D)-(A-D)(B-C) (7)
We note that the degenerate case for the square of a cross product is
(AxB)-(Ax B)=(A-A)(B-B)—(A-B)?
Wliich, if 6 is tg~l}e angle between A and B, reduces to the identity ||A|%||B|?sin?8 =
LA BI* — | AlI?|| BII? cos® 6.

The generalization of this expression to N dimensions can be derived from the product
of two Levi-Civita symbols (see the Appendix). If X and Y are two cross products

formed from the sets of vectors &1, To,...,Zn_1 and 41,¥2,...,YN-1, then
X.Y = Z xgil)gvéiz)”'xgv"l 1) (]1) (]2) y(ﬂi 1)
all indices
61’1]’1 5i1j2 T 6ile—1
det 5@'2'3'1 6iz'j2 T 61‘2]'.1\1—1 (8)
6iN—1j1 62‘N71j2 6iN~1jN—1

where the Kronecker delta, 6;;, is defined as

6 = 1 i=
=0 i F]

1.6 Geometry for N-Dimensional Graphics ¢ 159

It is easy to verify that for N = 3 this reduces to Equation (7).

More remarkable, however, is the fact that this formula shows that the square mag-
nitude of the normal N of a hyperplane given in Equation (6) is the subvolume of
the corresponding parallelepiped specified by Equation (5). That is, not only does the
direction of Equation (6) have an important geometric meaning with respect to the
(N — 1)-simplex specifying the hyperplane, but so does its magnitude! We find

v(1,1) v(1,2) v(l,N - 1)
v(2,1) v(2,2) v(2, N — 1)
NN = det . = ((N=1D!'Vy-1)
o(N—1,1) v(N—1,2) o(N=1,N - 1)

¢ Clipping Tests in N Dimensions <

Now we can exploit the properties of the volume formula to define clipping (“which
side”) tests in any dimension. If we replace (Znx —Zo) by (£ — o), Equation (3) becomes
a function Vy(Z). Furthermore, this function has the remarkable property that it is an
alternative form for the hyperplane equation, Equation (1), when Vn(Z) = 0.

We can furthermore determine on which side of the (N — 1)-dimensional hyperplane
determined by (%o, #1,...,Zn—1) an arbitrary point Z lies simply by checking the sign
of Vi (Z). That is,

e Vn(Z) = 0 = the point £ lies on a hyperplane and solves an equation of the form
Equation (1).

e Vy (%) > 0 = the point & lies above the hyperplane.

e VN(Z) < 0 = the point Z lies below the hyperplane.

Note: The special case Vy = 0 is of course just the general criterion for discovering
linear dependence among a set of (N + 1) vector variables. This has the following
elegant geometric interpretation: in 2D, we use the formula to compute the area of the
triangle formed by three points (Zo, Z1, £); if the area vanishes, the three points lie on a
single line. In 3D, if the volume of the tetrahedron formed by four points (Zo, %1, T2, T z)
vanishes, all four points are coplanar, and so on. Vanishing N-volume means the points
lie in a hyperplane of dimension no greater than (N — 1).

These relationships between the sign of Vi (Z) and the relative position of I are
precisely those we are accustomed to examining when we clip vectors (e.g., edges of
a triangle) to lie on one side of a plane in a viewing frustum or within a projected
viewing rectangle. For example, a 2D clipping line defined by the vector T — Ty =
(21 —z0, ¥1 —yo) has a right-handed (unnormalized) normal N = (=(y1—0), (z1—0)).

160 < Geometry

Writing the 2D volume as the area A, Equation (3) becomes
o1 (z1 — o) (36—930)} Lig . (=_ =
A(Z) = = det =—|N- (- %
@ = 5% (4) gy | 2 N E)]
for some arbitrary point #, and so we recover the form of Equation (1) as
2A

1@ - @l

where fi = N/||N||; the relationship of # to the clipping line is determined by the sign.

In 3D, when clipping a line against a plane, everything reduces to the traditional
form, namely the dot product between a 3D cross product and a vector from a point
Zo in the clipping plane to the point F being clipped. The normal to the plane through

(Zo, &1, T2) is
N = (&1 — &) x (F2 — i)
Gl o).
e[GoR e G50 G]) v
and we again find the same general form

\%
B (%= Fo) = —

V]

whose sign determines where Z falls. Figure 5 summarizes the relationship of the signed
volume to the clipping task in 2D and 3D.

Hyperplanes for clipping applications in any dimension are therefore easily defined
and checked by choosing Zn to be the test point & and checking the sign of Equation (3).
If N and a point Ty are easy to determine directly, then the procedure reduces to
checking the sign of the left hand side of Equation (1).

The final step is to find the desired point on the truncated, clipped line. Since the
clipped form of a triangle, tetrahedron, etc., can be determined from the clipped forms
of the component lines, we need only consider the point at which a line straddling
the clipping hyperplane intersects this hyperplane. If the line to be clipped is given
parametrically as Z(t) = & + t(Zp — £a), where Z, and I are on opposite sides of the
clipping hyperplane so 0 < ¢t < 1, then we simply plug Z(¢) into V(Z) = 0 and solve

for ¢:
_det[ml—xo Tog— Ty - wa—xo]_ﬁ-(fa—fo)

= = 10
det[fl—fo fg—fo fa—fb] n-(:ca—wb) ()

Here 1i is of course just the normal to the clipping hyperplane, discussed in detail above.

11.6 Geometry for N-Dimensional Graphics < 161

0

Figure 5. In 2D, the line through T to Z'1 defined by 1 - (£ — Zp) = 0 partitions the plane into two
regions, one where this expression is positive (e.g., for) and another where it is negative (e.g., for).
In 3D, the analogous procedure uses the plane defined by (g, ¥1, 2) to divide 3-space into two half
spaces. The same pictures serve to show how the distance h from a point to a hyperplane is computable
from the ratio of the simplex volume to the lower-dimensional volume of its base, i.e., 24 /L or 3V /A.

¢ Point-Hyperplane Distance ¢

The general formula for the volume of a parallelepiped is the product of the base and
the height, W = Bh. In N dimensions, if we take Wy = N!Vy to be the volume of the
parallelepiped with edges (Z'1 — Zo), (F2 — Zo), . - ., (Tn—1 — Zo), (¥ — To), this generalizes
to

Wy =hWn_1,

where h is the perpendicular distance from the point Z to the (N —1)-dimensional paral-

lelepiped with volume Wy 1 = (N —1)! Vy_; and edges (1 —Zo), (Z2—Zo), ..., (Tn-1—

Tp). We may thus immediately compute the distance h from a point to a hyperplane as
Wn N!'Vn _ NVy

h = = = 11
Wyor (N=-D!'Wny Vna (1)

Note! Here one must use the trick of Equation (4) to express Wy _; in terms of the
square root of a square determinant given by the product of two non-square matrices.
Thus in 2D, the area of a triangle (Zo, Z1, Z) is
1 (z1 —xo) (z— x0)

1
A=Vy = -Wy = — det
275275 (i —w) (v —wo)

and the length-squared of the base is L? = (&1 — &) - (&1 — Zo) so, with A = (1/2)hL,
the height becomes h = 2A/L = Wy /L = Wy /Wj. In 3D, the volume of the tetrahedron

162 ¢ Geometry

(Zo, 21, %2, %) is V = V5 = (1/6)W3 and the area A = (1/2)W; of the triangular base
may be written

_ _ (Z1 — o) - (F1 — Fo) (F1 — To) - (T2 — To)
(24)7 = (Wo)* =det | o0 20 (7 — 7o) (2 — F0) - (£ — Fo)

We know V = (1/3)hA, and so h = 3V/A = 6V/2A = W3/Wj. (See Figure 5.) We note
for reference that, as we showed earlier, the base (N — 1)-volume is related to its normal
by N-N= W]%,,l.

Here we also typically need to answer one last question, namely where is the point p
on the base hyperplane closest to the point Z whose distance h we just computed? This
can be found by parameterizing the line from ¥ to the base hyperplane along the normal
i to the hyperplane as F(t) = T + t, writing the implicit equation for the hyperplane

as 1 - (£(t) — %) = 0, and solving for the mutual solution t, = fi- (¥o — &) = —h. Thus
F o= d+ala- (@ -7)
= &—hn

¢ Barycentric Coordinates ¢

Barycentric coordinates (see, e.g., (Hocking and Young 1961, chapter 5)) are a practical
way to parameterize lines, surfaces, etc., for applications that must compute where vari-
ous geometric objects intersect. In practice, the barycentric coordinate method reduces
to specifying two points (£o,%1) on a line, three points (Zo,Z1,22) on a plane, four
points (Zo, £1, T2, F3) in a volume, and so on, and parameterizing the line segment, the
enclosed triangular area, the enclosed tetrahedral volume, and so forth, respectively, by

Z(t) = Zo+t(F — o) (12)
F(t1,t2) = Zo+ t1(T1 — To) + ta(Z2 — Zo) (13)
Bty te,ts) = o+ t1(T1 — Zo) + ta(T2 — To) + 3(T3 — o) (14)

The line and plane geometries are shown in Figure 6. The interpolated point then lies
within the N-simplex defined by the specified points provided that the t’s obey

0<t<1
0<t<1,0<t<1,0<(1—t1—12) <1
0<t1<1,0<t<1,0<t3<1,0< (1t —ta—t3) <1

11.6 Geometry for N-Dimensional Graphics <> 163

Figure 6. Barycentric coordinates in N dimensions.

Center of What? However, this is really only half the story of barycentric coordinates.
For the other half, we seek a geometric interpretation of the parameters ¢; when we are
given the value of F.

First let us look at the simple case when £ lies on the line segment between Fy and
#1. Solving Equation (12) for ¢ directly gives

(& — o) - (T1 — To)
(&1 — Zo) - (F1 — Zo)

t=

That is, t is the fraction of the distance that & has traveled along the line, the ratio
between the length from Zy to ¥ and the total length. But, since &1 — %y = &1 — ¥+ — o,
we eagily see that an alternative parameterization would be to take t; =t and

so that 1 = to + t; and Equation (12) for & becomes
Z(to, 1) = toTo + L1741

If tg = 1, then the entire fraction of the distance from r; to Z is assigned to tg and
¥ = Tg. If t; = 1, then the entire fraction of the distance from #y to & is assigned to t;
and T = 7.

Next, suppose we know Z in a plane and wish to compute its barycentric coordinates
by solving Equation (13) for (¢, t2). Once we realize that (Z1 — Zo) and (&2 — Zo) form
the basis for an affine coordinate system for the plane specified by (Zo, Z1,Z2) in any
dimension, we see that we may measure the relative barycentric coordinates by taking
the dot product with each basis vector:

o) = tllF1 - 2_50||2 + to(Z2 — Zo) - (31 — Zo)
) (F2—To) = t1(F1— Fo) - (T2 — To) + toll T2 — Lo|®

164 < Geometry

Extending the previously introduced abbreviation to the form v(z, j) = (& —T0)-(Z;— o)
and solving this pair of equations by Cramer’s rule, we get

[o(z,1) v(1,2)]

o et y(2,2) v(2.2)]
[v(1,1) v(1,2)]

det | 1(2,1) v(2,2) |

[v(1,1) v(z,1)]

by = det | v(1,2) wv(x,2) |
v(1,1) v(1,2)]

det| (2,1) v(2,2) |

The denominator is clearly proportional to the square of the area of the triangle
(Lo, F1,72), and the numerators have the form of squared areas as well. In N dimen-
sions, the numerators reduce to determinants of products of non-square matrices and
so may not be expressed as two separate determinants! However, if we transform to a
coordinate system that contains the triangle within the plane of two coordinate axes, or
if N = 2, an effectively square matrix is recovered; one factor of area in the denominator
then cancels out, giving the intuitively expected result that the barycentric coordinates
are ratios of two areas: t; = A(Z, To, 71)/A(ZTo, L1, T2), t2 = A(Z, To, To)/A(Zo, T1,T2)-
This leads us to introduce the generalized version of ¢ for the line, namely,

to = 1 -t —to= j((;l ’22’2)
(fl - fo) : (fl - f) (3?1 - .f()) . (f — I)
- det{ (T2 — Tp) - (F1 — T) (52—*0)'(552—9?)]
v(1,1) v(1,2)
e 52) wza))

Here we used the squaring argument given above to extend ¢ from its special-coordinate-
system interpretation as the fraction of the area contributed by the triangle (¥, 71, Z2)
to the invariant form. This form obviously has the desired property that to = 1 when
= 7o, and we finally have the sought equation (with 1 = to +t1 + t2)

f(to,tl, tg) = toTy + 177 + taTs .

It is amusing to note that the determinant identity 1 = {o+1t1+t2 and its higher analogs,
which are nontrivial to derive, generalize the simple identity & — Zo = 1 — 7 + £ — Lo
that we used in the 1D case.

Thus we can construct barycentric coordinates in any dimension which intuitively
correspond to fractions of hypervolumes; each barycentric coordinate is the hypervolume

11.6 Geometry for N-Dimensional Graphics < 165

x(t) ;

./P/ |
C

C P

Figure 7. Schematic diagram comparing an ordinary camera ray and a planar “thick ray” used in N-
dimensional ray-tracing methods.

x(11,t2)
°

of an N-simplex defined by the point Z and all but one of the other simplex-defining
points divided by the volume of the whole simplex. The actual computation, however,
is best done using the squared-volume form because only that form is independent of
the chosen coordinate system.

Note: The volumes are signed; even if T lies outside the N-simplex volume, the ratios
remain correct due to the cancellation between the larger volumes and the negative
volumes. We also remark that the generalized formulas for ¢; in any dimension, with
1 = Zf\io t;, give an elegant geometric interpretation of Cramer’s rule as ratios of
simplex volumes.

¢ Ray Tracing ¢

It is often useful to compute the intersection of a ray passing through two points (typi-
cally the camera focal point C and an image point 13) with a geometrical object. In N
dimensions, this object will typically be an (N — 1)-simplex defining an oriented visible
“face” with a normal vector computable as described above. We need to do several
things: compute the intersection of the ray with the hyperplane containing the “face,”
check to see whether the point lies within the simplex’s boundaries (observe that this
is a clipping problem), and see whether the normal vector points in the direction of the
ray (making it visible).
We formulate this procedure by first writing

—

X(t)=C+tP-C)

for the position of a point on the camera ray, as illustrated in Figure 7. Then we consider
a single (N — 1)-simplex of the tessellation to be described either by a known normal or
by using the set of N points giving its vertices to define its normal via Equation (6); in
either case, we can write the equation of any other point ¥ lying within the simplex as

166 < Geometry

Plugging in the parametric ray equation, we solve for the point X (¢) in the simplex
that lies on the ray:

i (7 - C)

= —F ==

a-(P-C)

A useful generalization of ray tracing to N dimensions follows from the observation
that a “thick ray” is cast into space by an open-ended simplex that is essentially a
barycentric coordinate form with the restriction 0 < (1—t;—t3—...) < 1relaxed (see,
e.g., (Hanson and Cross 1993)). A planar ray such as that shown in Figure 7 then has

fwo parameters,
X(tl,tz) =C+ t1(P1 — C) + tQ(PQ — C)

with obvious generalizations to M-parameter ray-like M -volumes. Intersecting such a
planar ray with an (N — 2)-dimensional manifold (describable using (N —2) barycentric
parameters) results in N equations with N unknown parameters, and thus a unique
point is determined as the mutual solution. In 3D a plane intersects a line in one point,
while in 4D two planes intersect in a single point, and in 5D a plane intersects a volume
in a point. Other generalizations, including rays that intersect particular geometries in
lines and surfaces, can easily be constructed. For example, the intersection of a planar
ray with the single hyperplane equation for a 3-manifold in 4D leaves one undetermined
parameter, and is therefore a line.

$ Conclusion ¢

Geometry is an essential tool employed in the creation of computer graphics images of
everyday objects. Statistical data analysis, mathematics, and science, on the other hand,
provide many problems where N-dimensional generalizations of the familiar 2D and 3D
formulas are required. The N-dimensional formulas and insights into the nature of
geometry that we have presented here provide a practical guide for extending computer
graphics into these higher-dimensional domains.

& Appendix: Determinants and the Levi-Civita Symbol %

One of the unifying features that has permitted us throughout this treatment to extend
formulas to arbitrary dimensions has been the use of determinants. But what if you
encounter an expression involving determinants that has not been given here and you
wish to work out its algebraic properties for yourself? In this appendix, we outline a
useful mathematical tool for treating determinants: the Levi-Civita symbol. References
for this are hard to locate; the author learned these techniques by apprenticeship while
studying general relativity, but even classic texts like Moller (Mgller 1972) contain only

11.6 Geometry for N-Dimensional Graphics ¢ 167

passing mention of the methods; somewhat more detail is given in hard-to-find sources
such as (Efimov and Rozendorn 1975).
First we define two basic objects, the Kronecker delta, ¢;;,

oi; = 1 i=7
= 0 i#]
and the Levi-Civita symbol, €5, which is the totally antisymmetric pseudotensor with
the properties

€ijk... = 1 i,7,k,..., in an even permutation of cyclic order
= -1 i,7,k,..., in an odd permutation of cyclic order
= 0 when any two indices are equal

All indices are assumed to range from 1 to N, e.g., i = {1,2,..., (N — 1), N}, so that,
for example, (1234,1342,4132,4321) are even permutations and (1324,2134,1243,4312)
are odd permutations.

We can use the Kronecker delta to write the dot product between two N-dimensional
vectors as a matrix product with the Kronecker delta representing the unit matrix,

.. NN N N N
A-B=3"3 A58 =3 Ai | D 6;B; | => AiBi (15)

i=1j=1 i=1 j=1 i=1
and the Levi-Civita symbol to write the determinant of a matrix |M| as

det [M] = Z €ivig...in M1,y M2y - - My
all 7, indices

The fundamental formula for the product of two Levi-Civita symbols is:

6i1j1 6i1j2 T ‘5i1jN

bijr Oiga 7 Digjin
€irig.in€injojn = det : . '

dinji Oinja dinjn

(Note that if we set {j1j2...jn} = {1,2,..., N}, the second Levi-Civita symbol reduces
to +1, and the resulting determinant is an explicit realization of the antisymmetry of
the Levi-Civita symbol itself as a determinant of Kronecker deltas!)

With this notation, the generalized cross product N of Equation (6), simplified by
setting o = 0, can be written

]\7 - Z €i1i2-'~iNv1iN$(1i1)gjgi2) . xgzrfzfll)f((l}\])

all indices

168 <& Geometry

where %(V) are the unit vectors (X,¥, ..., W) of the coordinate system. The dot product
between the normal and another vector simply becomes
N-L = Z 6i1i2i3---iN—1iNmgll)‘rgw)xi(iw) o "rg\zlli?) L(iN)
all indices

The reader can verify that, in 2D, N = 2?21 ey = (—y, +z), and so on. We
conclude with two examples of applications.

Rotations of Normals. Is the normal N a vector? Almost. To check this, we must
rotate each column vector in the cross product formula using z’ () = Zé\;l Rij:c(]) and

compute the behavior of N. Using the identity (Efimov and Rozendorn 1975, p. 203),

€irig...in_1in det [R] = Z €jrjain—1in Rris Bjaia -+ Rjy_yin 1 Rjnin
all ji indices
we find
N = Z eili2~--iN~1iRi1j1Igjl)Rizhmg?) T RiN-1jN—1x§\]l}izl)

all indices

except ¢

N .

= Z RijN(J) det [R]
j=1

Therefore N is a pseudotensor and behaves as a vector for ordinary rotations (which
have det [R] = 1), but changes sign if [R] contains an odd number of reflections.

Contraction Formula. The contraction of two partial determinants of (N — K) N-
dimensional vectors can be expanded in terms of products of Kronecker deltas as follows:

§ : €irig. iN_KIN—K+1--iN €102 JN-KIN-K+1--IN —
IN—K+1--IN
51'1]'1 6i1j2 T 6i1jN—K
85 i . 8
251 272 l2jN—K
K!det . .
6’£N—Kj1 6iN—Kj2 6iN—KjN—K

The expression in Equation (8) for the dot product of two normals is a special case of
this formula.

11.6 Geometry for N-Dimensional Graphics < 169

¢ Acknowledgment <
This work was supported in part by NSF grant IRI-91-06389.

¢ Bibliography <

(Banchoff and Werner 1983) T. Banchoff and J. Werner. Linear Algebra through Ge-
ometry. Springer-Verlag, New York, 1983.

(Banchoff 1990) Thomas F. Banchoff. Beyond the Third Dimension: Geometry, Com-

puter Graphics, and Higher Dimensions. Scientific American Library, New York,
NY, 1990.

(Brun et al. 1989) R. Brun, O. Couet, C. Vandoni, and P. Zanarini. PAW - Physics

Analysis Workstation, The Complete Reference. CERN, Geneva, Switzerland,
October 1989. Version 1.07.

(Chen et al. 1988) Michael Chen, S. Joy Mountford, and Abigail Sellen. A study in

interactive 3-d rotation using 2-d control devices. In Proceedings of SIGGRAPH
'88, Computer Graphics, 22(4):121-130, 1988.

(Coxeter 1991) H. S. M. Coxeter. Regular Complex Polytopes, second edition. Cam-
bridge University Press, Cambridge, 1991.

(Edmonds 1957) A. R. Edmonds. Angular Momentum in Quantum Mechanics. Prince-
ton University Press, Princeton, NJ, 1957.

(Efimov and Rozendorn 1975) N. V. Efimov and E. R. Rozendorn. Linear Algebra and
Multi- Dimenstonal Geometry. Mir Publishers, Moscow, 1975.

(Feiner and Beshers 1990a) S. Feiner and C. Beshers. Visualizing n-dimensional virtual
worlds with n-vision. Computer Graphics, 24(2):37-38, March 1990.

(Feiner and Beshers 1990b) S. Feiner and C. Beshers. Worlds within worlds: Metaphors

for exploring n-dimensional virtual worlds. In Proceedings of UIST °90, Snowbird,
Utah, pages 76-83, October 1990.

(Francis 1987) G. K. Francis. A Topological Picturebook. Springer-Verlag, New York,
1987.

(Hanson 1992) Andrew J. Hanson. The rolling ball. In David Kirk, editor, Graphics
Gems III, pages 51-60. Academic Press, San Diego, CA, 1992.

(Hanson and Cross 1993) A.J. Hanson and R. A. Cross. Interactive visualization meth-
ods for four dimensions. In Proceedings of IEEE Visualization '93, pages 196--203.
IEEE Computer Society Press, Los Alamitos, CA, 1993.

170 < Geometry

(Hanson and Heng 1992a) Andrew J. Hanson and Pheng A. Heng. Four-dimensional
views of 3-D scalar fields. In Proceedings of Visualization ’92, pages 84-91. IEEE
Computer Society Press, Los Alamitos, CA, October 1992.

(Hanson and Heng 1992b) Andrew J. Hanson and Pheng A. Heng. Illuminating the
fourth dimension. IEEE Computer Graphics and Applications, 12(4):54-62, July
1992.

(Hocking and Young 1961) John G. Hocking and Gail S. Young. Topology. Addison-
Wesley, Reading, MA, 1961.

(Mgller 1972) C. Mgller. The Theory of Relativity. Oxford University Press, London,
1972.

(Noll 1967) Michael A. Noll. A computer technique for displaying n-dimensional hy-
perobjects. Communications of the ACM, 10(8):469-473, August 1967.

(Phillips et al. 1993) Mark Phillips, Silvio Levy, and Tamara Munzner. Geomview: An
interactive geometry viewer. In the Computers and Mathematics column of the
Notices of the Amer. Math. Soc., 40(8):985-988 (October 1993).

(Sommerville 1958) D. M. Y. Sommerville. An Introduction to the Geometry of N
Dimensions. Reprinted by Dover Press, 1958.

o Ml

Transformations

This part of the book contains six Gems on the subject of 3D transformations. The title
of this part is “Transformations,” but it could also be “Shoemake et al.,” since most of
them were written by Ken Shoemake!

Hl.1. Arcball Rotation Control, by Ken Shoemake.

Asks the question: how does one control the three degrees of freedom of rotation in 3D,
using a 2D input device such as a mouse? Shoemake’s answer: use a pair of points to
designate a relative rotation, and use quaternions to make the rotation axis specification
intuitive and consistent. Page 175.

ll.2. Efficient Eigenvalues for Visualization, by Robert L. Cromwell.

Answers the question: if T have a set of points in 3D, from what direction should I
view them to get the best view (minimizing bunching in the projection)? Solving this
involves the eigenvalues of a 3 x 3 matrix. Optimized formulas are given for computing
the eigenvalues. Page 193.

l.3. Fast Inversion of Length- and Angle-Preserving Matrices, by Kevin Wu.

Presents optimized formulas and code to compute the inverse of a 4 x 4 matrix that is
known to be length- and angle-preserving (consisting of only rotation, translation, and
uniform scaling). Page 199.

il.4. Polar Matrix Decomposition, by Ken Shoemake.

Describes a method for decomposing an affine 3D transformation into translation, scal-
ing, and rotation transformations in a physically meaningful way. This can be useful
for keyframe animation. Page 207.

173

174 < Transformations

5. Euler Angle Conversion, by Ken Shoemake.

Gives code to convert a rotation expressed by one triple of axes into another triple.
Rotations in 3D are often described in terms of Euler angles: rotations about z, y,
and z in some order. The order of rotations is significant, but not standardized. These
routines are useful for doing such conversions. Page 222.

lll.6. Fiber Bundle Twist Reduction, by Ken Shoemake.
Applies some advanced concepts from topology to the problem of minimizing twist
(rotation about the z axis of screen space) in animation. Page 230.

V

Q1.1

Arcball Rotation Control

Ken Shoemake

University of Pennsylvania
Philadelphia, PA
shoemake @graphics.cis.upenn.edu

¢ Introduction <

Previous Gems have explained how to manipulate rotations in 3D with a virtual track-
ball (Hultquist 1990), and in both 3D and 4D with a rolling ball (Hanson 1992). Both
methods are essentially the virtual sphere of a recent survey (Chen et al. 1988), and
simulate some physical action. In so doing, however, they exhibit hysteresis, or path
dependence. That is, when you drag the mouse from point A to point B, the end result
will change depending on the path you follow. Hanson uses this effect as a way to rotate
around the axis perpendicular to the screen (which I will call z), but usually it is just a
counterintuitive nuisance. This Gem presents C code for the Arcball rotation controller
(Shoemake 1992), which is path independent. It is cheaper to implement than the other
methods, but better behaved and more versatile. One special feature of Arcball is its
ability to handle with equal ease both free rotation and constrained rotation about any
axis. The simplest implementation uses quaternions (Shoemake 1985).

& Arcs to Rotations <

Recall that a unit quaternion ¢ = [(z,y,2),w] = [Vsiné, cos 6] represents a rotation
by 20 around the axis given by the unit vector v, and that the quaternion product
gp represents the rotation p followed by g. Now suppose we have two points on a unit
sphere in 3-space, Vo and V1, considered as unit quaternions [Vo,0] and [V1,0]. Their
“ratio” vivy ! converts the arc between them to a rotation.! What rotation do we get7
Because the points give us pure vector quaternions, we have V1V0 = [Vg X ¥1, Vg - ¥1].
Thus the axis of rotation is perpendicular to the plane containing the two vectors, and
the angle of rotation is twice the angle between them.

The Arcball controller displays this sphere on the screen (cheaply, as the circle of its
silhouette), and uses the mouse down and drag positions on the sphere as the end points
of an arc generating a rotation. The user clicks down at Vo and drags to ¥1. As the

1 Be careful not to confuse the unit quaternion hypersphere, where a single point represents a rotation,
with this ordinary sphere, where a pair of points is required.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

175 Macintosh ISBN 0-12-336156-7

176 < Transformations

mouse is dragged, v; changes continuously, and so does the rotation. While dragging,
we draw the changing arc and also the turning object.

Broken down into elementary steps, we do the following. Call the screen coordinates
of the cursor at mouse down sg = (Zo,¥0,0), the screen coordinates of the center of

the Arcball ¢, and its screen radius r. Compute vg = (8o — ¢)/7, and z = /1 — [voll?.
Then ¥ = vg + (0,0, z) is our first point on the unit sphere. Do the same thing with
the current cursor coordinates to get V1, and with these two points compute the unit
quaternion garag = [Vo X V1,Vg - ¥1]. We use the Arcball to manipulate an object’s
orientation, which at mouse down we save as a quaternion, gqown. While dragging, we
compute the object’s current orientation as ¢now = ¢dragldown- S0 long as the mouse
button is held we use the same Vg and ggown; upon release we permanently update the
object’s orientation to ¢now-

¢ Arcball Properties ¢

Arcball’s most important properties are hard to convey in print: it has a good “feel” and
can be mastered in minutes. This is partly because the object motion mimics the mouse
motion. If you drag across the center of the sphere, the object rotates in the direction
the mouse moves. If you drag around the edge of the sphere, the object rotates around
z in the same direction. But there is more to Arcball. With a single mouse stroke it is
possible to rotate 360° around any axis. In fact, opposite points on the edge give the
same rotation, so it is possible to wrap around and keep turning. And strokes add like
vectors, which is truly remarkable since rotations do not commute.

This last property is the source of Arcball’s path independence and requires a brief
explanation. Consider two consecutive strokes, as in Figure 1.

Figure 1. Arc addition.

II.1 Arcball Rotation Control < 177

/

Figure 2. (a) Constraint implementation. (b) Constraint selection.

A stroke from vy to v; followed by a stroke from Vi to Vo gives the same ef-
fect as a direct stroke from Vo to V2. That’s because the composite quaternion is
(VovTH(V1vg ') = V2¥g!. The benefit is a more forgiving interface with a solid feel.
Once you start dragging, where the mouse is positioned matters, but not how you got
there. There is no permanent penalty for losing a mouse sample, which is often hard to
avoid; the behavior is like lossless incremental accumulation. Path independence also
makes displaying an arc meaningful, since it really does show you the cumulative effect
of your drag.

Like Hanson, we can also use a pair of controllers to turn objects in 4D. The com-
plexity of rotations grows with the square of the dimension, giving in 4D 6 degrees of
freedom. We can use an arbitrary quaternion, p, to describe a point, and a pair of unit
quaternions, v and v, to describe a rotation. In 3D, we use the formula upu~!'; a 4D
version is uvpu~!. Adjust u with one Arcball, and v with the other.

¢ Adding Constraints <

We can now rotate with full freedom, but sometimes we want less. Fortunately, Arcball
can easily be augmented with axis constraints.? (See Figure 2a.) To implement this, take
your original Arcball points, subtract their components parallel to your chosen axis, and
renormalize onto the sphere. Call the unit axis vector a; then compute v, = Vo—(Vo-a)a,
and ¥}y = v} /||vh||. Do the same for vi. If either v{ or v} ends up with negative z, negate

2Where you get an axis is up to you. It could be a coordinate axis, a surface normal, a body principal
axis of inertia, a light reflection direction, or whatever.

178 < Transformations

that vector to its opposite on the front hemisphere. Using these new points instead of
the originals to compute ¢qrag, your rotation is now constrained.

Here’s an easy way to pick one axis from a small set of choices. Signal constraint mode
by holding down, say, the [SHIFT| key. Have the controller pop up arcs superimposed on
the Arcball, one for each of your axes. As you move the mouse around before clicking,
the closest arc should be highlighted. (See Figure 2b.) When you click down with the
mouse, you are constrained to the axis for the closest arc, and the other arcs disappear.
There is both a visual clue (seeing pop-up arcs) and a kinesthetic clue (holding down
the [SHIFT] key) that you are in constraint mode. When you release only the mouse
button, you stay in constraint mode and are again shown all the arc choices. When you
release the [SHIFT| key, you return to free mode, signaled by having the constraint arcs
disappear. If you have different axis sets (object axes, camera axes, et cetera), you can
hold down different keys to signal constraint mode.

¢ Code ¢

/***x* BallMath.h - Essential routines for Arcball. *x*x*/
#ifndef _H_BallMath
#define _H_BallMath
#include "BallAux.h"

HVect MouseOnSphere (HVect mouse, HVect ballCenter, double ballRadius);
HVect ConstrainToAxis{HVect loose, HVect axis);

int NearestConstraintAxis(HVect loose, HVect *axes, int nAxes);

Quat Qt_FromBallPoints(HVect from, HVect to):;

void Qt_ToBallPoints (Quat g, HVect *arcFrom, HVect *arcTo);

#endif

/***** EOF *****/

/***%x% BallAux.h - Vector and quaternion routines for Arcball. *x***/
#ifndef _H_BallAux

#define _H_BallAux

typedef int Bool;

typedef struct {float x, y, z, w;} Quat;
enum QuatPart {X, Y, Z, W, QuatLen};
typedef Quat HVect;

typedef float HMatrix[QuatLen] [QuatLen];

extern Quat gOne;

HMatrix *Qt_ToMatrix(Quat q, HMatrix out);
Quat Qt_Conj(Quat q);:

Quat Qt_Mul (Quat gL, Quat qR);

HVect V3_(float x, float y, float z);
float V3_Norm(HVect v);

HVect V3_Unit (HVect v);

HVect V3_Scale(HVect v, float s);

HVect V3_Negate(HVect v);

1.1 Arcball Rotation Control

HvVect V3_Sub(HVect vl, HVect v2);
float V3_Dot (HVect vl1, HVect v2);
HVect V3_Cross(HVect vl, HVect v2);
HVect V3_Bisect (HVect v0, HVect vl);
#endif

/***** EOF *****/

/***** Ball‘h *****/

#ifndef _H_Ball

#define _H_Ball

#include "BallAux.h"

typedef enum AxisSet {NoAxes, CameralAxes, BodyAxes, OtherAxes,
typedef float *ConstraintSet;
typedef struct {
HVect center;
double radius;
Quat gNow, gDown, gDrag;
HVect vNow, vDown, vFrom, vTo, vrFrom, vrTo;
HMatrix mNow, mDown;
Bool showResult, dragging;
ConstraintSet sets[NSets];
int setSizes[NSets];
AxisSet axisSet;
int axisIndex;
} BallData;

/* Public routines */

void Ball_Init (BallData *ball);

void Ball_Place(BallData *ball, HVect center, double radius);
void Ball_Mouse(BallData *ball, HVect vNow};
void Ball_UseSet (BallData *ball, AxisSet axisSet);
void Ball_ShowResult (BallData *ball);

void Ball_HideResult (BallData *ball);

voild Ball_Update(BallData *ball);

void Ball_Value(BallData *ball, HMatrix mNow) ;
void Ball_BeginDrag(BallData *ball);

void Ball_EndDrag(Ballbata *ball);

void Ball_Draw(BallData *ball);

/* Private routines */

vold DrawAnyArc (HVect vFrom, HVect vTo);

void DrawHalfArc (HVect n);

void Ball_DrawConstraints(BallData *ball});
void Ball_DrawDragArc(BallData *ball);

void Ball_DrawResultArc(BallData *ball);
#endif

/**'k** EOF *****/

/**** Body.h ****/

#ifndef _H_Body

#define _H_Body

#include <gl/gl.h>

void drawbody (Matrix Rot);

#endif

/***** EOF *****/

NSets} AxisSet;

¢

179

180 < Transformations

/**x** BgllMath.c - Essential routines for ArcBall. ****/
#include <math.h>

#include "BallMath.h"

#include "Balladux.h"

/* Convert window coordinates to sphere coordinates. */
HVect MouseOnSphere (HVect mouse, HVect ballCenter, double ballRadius)
{
HvVect ballMouse;
register double mag;
ballMouse.x = (mouse.X - ballCenter.x) / ballRadius;
ballMouse.y = (mouse.y - ballCenter.y) / ballRadius;
mag = ballMouse.x*ballMouse.x + ballMouse.y*ballMouse.y;
if (mag > 1.0) {
register double scale = 1.0/sqgrt (mag);
ballMouse.x *= scale; ballMouse.y *= scale;
ballMouse.z = 0.0;
} else {
ballMouse.z = sgrt(l - mag);
}
ballMouse.w = 0.0;
return (ballMouse):;

/* Construct a unit quaternion from two points on unit sphere */
Quat Qt_FromBallPoints (HVect from, HVect to)
{

Quat qgu;

qu.x = from.y*to.z - from.z*to.y;

qu.y = from.z*to.x - from.x*to.z;

qu.z = from.x*to.y - from.y*to.x;

qu.w = from.x*to.x + from.y*to.y + from.z*to.z;

return (qu);

/* Convert a unit quaternion to two points on unit sphere */
void Qt_ToBallPoints(Quat g, HVect *arcFrom, HVect *arcTo)
{
double s;
s = sqgrt(g.x*g.x + q.vy*q.vy);
if (s == 0.0) {
*arcFrom = V3_(0.0, 1.0, 0.0);
} else {
*arcFrom = V3_(-q.v/s, g.x/s, 0.0);
}
arcTo->x = g.w*arcFrom->x - g.z*arcFrom->y;
arcTo->y = g.wrarcFrom->y + g.z*arcFrom->x;
arcTo->z = g.x*arcFrom->y - g.y*arcFrom->Xx;
if (g.w < 0.0) *arcFrom = V3_(-arcFrom->x, -arcFrom->y, 0.0);

1.1 Arcball Rotation Control

/* Force sphere point to be perpendicular to axis. */
HVect ConstrainToAxis(HVect loose,

HVect axis)
{
Hvect onPlane;

register float norm;
onPlane =

V3_Sub(loose, V3_Scale(axis, V3_Dot (axis, loose)));
norm = V3_Norm{onPlane);

if (norm > 0.0) {
if (onPlane.z < 0.0) onPlane = V3_Negate(onPlane);
return (V3_Scale{onPlane, 1l/sgrt{norm)));

} /* else drop through */

if (axis.z == 1) {
onPlane = Vv3_(1.0, 0.0, 0.0);

} else {

onPlane = V3_Unit (V3_{-axis.y, axis.x, 0.0));

}
return (onPlane);

}

/* Find the index of nearest arc of axis set. */
int NearestConstraintAxis(HVect loose, HVect *axes, int naAxes)
{
HvVect onPlane;
register float max, dot;
register int 1, nearest;
max = -1; nearest = 0;
for (i=0; i<nAxes; i++) {
onPlane = ConstrainToAxis(loose, axes[il);
dot = V3_Dot (onPlane, loose);
if (dot>max) {

max = dot; nearest = 1i;

}

return {(nearest);
}
/***** EOF *****/
/***** BallAUX.C *****/
#include <math.h>
#include "BallAux.h"
Quat gOne = {0, 0, 0, 1};

/* Return quaternion product gL * gR. Note: order is important!

* To combine rotations, use the product Mul (gSecond, gFirst}),
* which gives the effect of rotating by gFirst then gSecond. */
Quat Qt_Mul (Quat gL, Quat dR)

{
Quat gg;
gq.w = gL.w*gR.w - gL.x*gR.x - qL.y*gR.y - gL.z*gR.z;
gq.x = gL.w*gR.x + gL.x*gR.w + qL.y*gR.z - gL.z*qR.y;
gd.y = qL.w*gR.y + dL.y*dR.w + gL.z*gR.x - gL.x*qR.z;
qg.z = gL.w*gR.z + gL.z*qR.w + gL.x*gR.y - dL.y*qR.x;

return (qdq);

&

181

182 < Transformations

/* Construct rotation matrix from (possibly non-unit) guaternion.
* Assumes matrix is used to multiply column vector on the left:
* vnew = mat vold. Works correctly for right-handed coordinate system
* and right-handed rotations. */

HMatrix *Qt_ToMatrix(Quat g, HMatrix out)

{
double Ng = g.X*Q.X + Q.¥Y*Q.y + d.2*J.Z + q.W*q.w;
double s = (Ng > 0.0) ? (2.0 / Ng) : 0.0;
double xs = g.x*s, vs = q.y*s, zS = .z*s;
double wx = g.w*xs, wy = .wW*ys, wz = g.wW*zs; |
double xx = J.x*xXs, Xy = g.x*ys, Xz = .X*zs; =
double vy = g.y*ys, vz = q.y*zs, 2z = J.2%zS; 5
out [X][X) = 1.0 - (yy + zz); out{Y][X] = xy + wz; out (2] [X] = xz - wy:
out [X][Y] = xy - wz; out[Y][Y] = 1.0 - (xx + z2); out [Z2] [Y] = vz + wx;
out [X]){Z] = xz + wy; out[Y]I[Z] = yz - wx; out[Z][Z] = 1.0 - (xx + yy);
out [X] [W] = outlY][W] = out[z][W] = out[W][X] = out (W] [Y] = out[W][z] = 0.0;
out [W] [W] = 1.0;
return ((HMatrix *)&out):

/* Return conjugate of quaternion. */

Quat Qt_Conj{Quat q)

{
Quat qg;
gqqg.x = -g.X; 94.y = -4.y; 4d.z = -49.2z2; 9q.w = Jd.W;
return {(qqg);

/* Return vector formed from components */
HVect V3_(float x, float y, float z)
{
HVect v;
V.X = X; V.y = y; v.z = z; v.w = 0;
return (v);

/* Return norm of v, defined as sum of squares of components */
float V3_Norm(HVect v)
{

return (V.X*V.X + V.y*V.y + v.z*v.z);

}

/* Return unit magnitude vector in direction of v */
HVect V3_Unit (HVect v)
{

static HVect u = {0, 0, 0, 0};

float vlen = sqgrt (V3 _Norm(v));

if (vlen != 0.0) {

u.x = v.x/vlen; u.y = v.y/vlen; u.z = v.z/vlen;
}

return {(u);

I1l.1 Arcball Rotation Control { 183

/* Return version of v scaled by s */

HVect V3_Scale(HVect v, float s)

{
HvVect u;
U.X = 8*V.X; U.¥y = 8*V.y; U.Z = 8*V.Z; U.W = V.W;
return (u);

/* Return negative of v */

HVect V3_Negate(HVect v)

{
static HVect u = {0, 0, 0, 0};
U.X = -V.X; U.¥y = -V.Y; U.Z = -V.Z;
return (u);

/* Return sum of v1 and v2 */

HVect V3_Add(HVect vl1, HVect v2)

{
static HvVect v = {0, 0, 0, 0};
v.x = v1.x+v2.x%x; v.y = vl.y+v2.y; v.z = vl.z+v2.z;
return (v);

/* Return difference of vl minus v2 */

HVect V3_Sub(HVect vl, HVect v2)

{
static Hvect v = {0, 0, 0, 0};
v.x = vl.x-v2.x; v.y = vl.y-v2.y; v.z = vl.z-v2.z;
return (v);

/* Halve arc between unit vectors v0 and vl. */
HVect V3_Bisect (HVect v0, HvVect vl)
{
Hvect v = {0, 0, 0, 0};
float Nv;
v = V3_Add(v0, vl1);
Nv = V3_Norm(v);
if (Nv < 1.0e-5) {
v = V3_(0, 0, 1);
} else {
v = V3_Scale(v, 1/sgrt(Nv));
}

return (v);

/* Return dot product of vl and v2 */
float V3_Dot (HVect vl, HVect v2}
{

return (vl.x*v2.x + vl.y*v2.y + vl.z*v2.z);

184 < Transformations

/* Return cross product, vl x v2 */
HVect V3_Cross(HVect vl, HVect v2)

{

static Hvect v = {0, 0, 0, 0O};

v.X = vli.y*v2.z-vl.z*v2.y;

v.y = vl.z*v2.x-v1.x*v2.z;

v.z = vi.x*v2.y-vl.y*v2.x;

return (v); 5
} |

/***** EOF *****/

/***** Ball.c *****/

/* Ken Shoemake, 1993 */
#include <gl/gl.h>
#include "Ball.h"
#include "BallMath.h"

#define LG_NSEGS 4
#define NSEGS (1l<<LG_NSEGS)

#define RIMCOLOR({)} RGBcolor (255, 255, 255)
#define FARCOLOR () RGBcolor (195, 127, 31)
#define NEARCOLOR () RGBcolor (255, 255, 63)
#define DRAGCOLOR() RGBcolor (127, 255, 255)
#define RESCOLOR() RGBcolor (195, 31, 31)

HMatrix mId = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};
float otherAxis(][4] = {{-0.48, 0.80, 0.36, 1}};

/* Establish reasonable initial values for controller. */
void Ball_Init(BallData *ball)
{
int i;
ball->center = gOne;
ball-»radius = 1.0;
ball->vDown = ball->vNow = gOne;
ball->gDown = ball->»>gNow = gOne;
for {(i=15; i»>=0; i--)
((float *)ball-»mNow) [i] = ((float *)ball->mDown)[i] = ((float *)mId)[i];
ball-»>showResult = ball->dragging = FALSE;
ball-»axisSet = NoAxes;

ball-»>sets[CameraAxes] = mId[X]; ball-»setSizes[CameraAxes] = 3;
ball->sets[BodyAxes] = ball->mDown[X]; ball->setSizes[BodyAxes] = 3;
ball->sets[OtherAxes] = otherAxis[X]; ball-»setSizes[OtherAxes] = 1;

/* Set the center and size of the controller. */
void Ball_Place{(BallData *ball, HVect center, double radius)
{

ball->center = center;

ball-»radius = radius;

111.1 Arcball Rotation Control

/* Incorporate new mouse position. */
void Ball_Mouse(BallData *ball, HVect vNow)
{

ball->vNow = vNow;

/* Choose a constraint set, or none. */
void Ball_UseSet (BallData *ball, AxisSet axisSet)

{
if (!ball-»dragging) ball->axisSet = axisSet;

/* Begin drawing arc for all drags combined. */
void Ball_ShowResult (BallbData *ball)
{

ball->showResult = TRUE;

/* Stop drawing arc for all drags combined. */
void Ball_HideResult (BallData *ball)
{

ball-»>showResult = FALSE;

/* Using vDown, vNow, dragging, and axisSet, compute rotation etc. */
void Ball_Update (BallData *ball)
{
int i, setSize = ball-»setSizes[ball-»axisSet];
HVect *set = (HVect *) (ball->sets([ball->axisSet]);
ball->vFrom = MouseOnSphere (ball-»vDown, ball->center, ball->radius);
ball-»>vTo = MouseOnSphere (ball->vNow, ball->center, ball->radius);
if (ball->dragging) {
if (ball-»axisSet!=NoAxes) {
ball->vFrom = ConstrainToAxis(ball->vFrom, set[ball->axisIndex]);
ball->vTo = ConstrainToAxis(ball->vTo, set[ball-»axisIndex]);
}
ball-»>gDrag = Qt_FromBallPoints(ball->vFrom, ball->vTo);
ball->gNow = Qt_Mul (ball->qgDrag, ball->gDown) ;
} else {
if (ball->axisSet!=NoaAxes) {
ball-»axisIndex = NearestConstraintAxis(ball->vTo, set, setSize);

}
Qt_ToBallPoints(ball->gbhown, &ball-»>vrFrom, &ball-»>vrTo);
Qt_ToMatrix(Qt_Conj(ball->gNow), ball-»>mNow); /* Gives transpose for GL. */

/* Return rotation matrix defined by controller use. */
volid Ball_Value(BallData *ball, HMatrix mNow)
{
int 1;
for (i=15; i>=0; i--) ({(float *)mNow) [i] = ((float *)ball->mNow) [i];

185

186 < Transformations

/* Begin drag seguence. */
volid Rall_BeginDrag(BallData *ball)
{
ball->dragging = TRUE; y
ball-»vDown = ball->vNow;

/* Stop drag sequence. */
void Ball_EndDrag(BallData *ball)
{
int i;
ball-»dragging = FALSE;
ball->gDown = ball->gNow;
for {(i=15; i»>=0; i--)
((float *)ball->mDown) [i] = ((float *)ball->mNow) [i];

/* Draw the controller with all its arcs. */
void Ball_Draw(BallData *ball)
{
float r = ball-»>radius;
pushmatrix();
loadmatrix (mId);
ortho2(-1.0, 1.0, -1.0, 1.0);
RIMCOLOR() ;
scale(r, r, r);
circ (0.0, 0.0, 1.0);
Ball_DrawResultArc(ball);
Ball_DrawConstraints(ball);
Ball_DrawDragArc(ball);
popmatrix{);

/* Draw an arc defined by its ends. */
void DrawAnyArc (HVect vFrom, HVect vTo)

{
int 1i;
HVect pts[NSEGS+1];
double dot;
pts[0] = vFrom; |
pts(l] = pts([NSEGS] = vTo;
for (i=0; i<LG_NSEGS; i++) pts([l] = V3_Bisect(pts(0], pts[l]);

dot = 2.0*V3_Dot (pts([0], pts{l]);
for (i=2; 1i<NSEGS; i++) {
ptsfii] = V3_Sub(V3_Scale(pts[i-1], dot), pts{i-21};
}
bgnline();
for (i1i=0; i<=NSEGS; i++)
v3f((float *)&ptsli]);
endline()

:

8

1ll.1 Arcball Rotation Control

/* Draw the arc of a semicircle defined by its axis. */
void DrawHalfArc (HVect n)
{

HVect p, m;

p.z = 0;

if (n.z !'= 1.0) {
pP.X = n.y; p.y = -n.x;
p = V3_Unit(p);

} else {

p.x = 0; p.y = 1;
}
m = V3_Cross(p, n);
DrawAnyArc (p, m);
DrawAnyaArc (m, V3_Negate(p)):

/* Draw all constraint arcs. */
void Ball_DrawConstraints(BallData *ball)
{
ConstraintSet set;
HVect axis;
int j, axisI, setSize = ball-»setSizes([ball-»axisSet];
if (ball->axisSet==NoAxes) return;
set = ball-»sets([ball-»axisSet];
for (axisI=0; axisI<setSize; axisI++) {
if (ball-»axigIndex!=axisl) {
if (ball-»dragging) continue;
FARCOLOR() ;
} else NEARCOLOR() ;
axis = *(HVect *)&set{4*axisI];
if (axis.z==1.0) {
circ(0.0, 0.0, 1.0);
} else {
DrawHalfArc (axis) ;

/* Draw "rubber band" arc during dragging. */
void Ball_DrawDragArc (BallData *ball)
{
DRAGCOLOR () ;
if (ball-»dragging) DrawAnyArc(ball->vFrom, ball->vTo);

/* Draw arc for result of all drags. */
void Ball_DrawResultArc(BallData *ball)
{
RESCOLOR () ;
if (ball-»>showResult) DrawAnyArc (ball->vrFrom, ball->vrTo);
i***** EOF *****/

187

188 < Transformations

/***** Body.c *****/
#include <gl/gl.h>
#include "Body.h"

enum QuatPart (X, Y, Z, W};
int bodyNPoints = 8;
int bodyNFaces = 7;

float theBodyRadius = 3.0;
float thePoints[][4] = {

{ 3.0, 0.0, 0.0,
{-1.0, 1.0, 0.0,
{-1.0, -1.0, 0.0,
{-0.75, 0.0, -0.25,
{ 1.0, 0.0, 0.0,
{-0.75, 0.0, 0.75,
{-0.5, -0.125, 0.0,
{-0.5, 0.125, 0.0,
Y
int theFacevertices[]1[4] = {
{3, 0, 1, 2%,
{3, 4, 5, 6},
{3, 4, 7, 5},
3, 5, 7, 63},
{3, 0, 2, 31,
{3, 0, 3, 11,
{3, 1, 3, 2%,
}i
float theFaceNormals[][4] = {

{0., 0., 1., 0},

{0.08152896377979659767, -0.978347565357559172,
{0.08152896377979659767, 0.978347565357559172,
{-0.9486832980505137996, 0.
{0.06428243465332250222, -0.2571297386132900089,
{0.06428243465332250222, 0.2571297386132900089,
{-0.7071067811865475244, 0.

t:
short theFaceColors[]}[3] = {
{102, 204, 255},
{ 0, 153, 204},
{ 0, 153, 2043
{204, 51, 157},
{ 51, 102, 157},
{ 51, 102, 157},
{102, 102, 172%,

1},
1},
13},
1},
1},
13,
1},
1}

0.1902342488195253946,
0.1902342488195253946,
-0.3162277660168379332,

-0.9642365197998375334,
-0.9642365197998375334,
-0.7071067811865475244,

/* Transform body normals, draw front */
void drawbody (Matrix Rot)

III.1 Arcball Rotation Control

{

double bodyScale = 1.0/theBodyRadius;
register int i, j, k, n;

pushmatrix();
gcale (bodyScale, bodyScale, bodyScale);
for (j=0; j<bodyNFaces; j++) {

double dot = Rot[X]
Y

if (dot>0.0) {

}

[Z] *theFaceNormals[j] [
+Rot [Y] [Z] *theFaceNormals[j] [
+Rot [Z] [Z] *theFaceNormals [j1I

/* Front-facing polygon

short shadedColor(31];
dot += 0.4; if (dot>1.0) dot = 1.0;
shadedColor[0] = dot*theFaceColors[jl[0];
shadedColor (1] = dot*theFaceColors[jl[1];
shadedColor([2] dot*theFaceColors{jl[2];
n = theFacevVertices[j][0];
RGBcolor {shadedColor (0], shadedColor([l), shadedColor[2]):
bgnpolygon() ;
for (k=1; k<=n; k++) {

1 = theFaceVertices![j][k];

v4f (thePoints[i]);

X]
Y]
Z1;

, so draw it */

}
endpolygon(};

popmatrix{);

}

JrxEkx* QOF *kxkxkx/

/X ** %% Demo.

c *****/

/* Ren Shoemake, 1993 */
#include <gl/gl.h>
#include <gl/device.h>
#include "BallAux.h"
#include "Body.h"
#include "Ball.h"

typedef struct {long x, y;} Place;

#define RADIUS

(0.75)

#define CNTRLDN 1
#define SHIFTDN 2

void main{void)

{
int gid;

short active;

/* TRUE if window is attached */

Device dev;

short wval;

Place winsize, winorig;
Place mouseNow, mouseDown;

&

189

190 < Transformations

int keysDown;
HVect vNow;
BallData ball;

keepaspect (1, 1);

prefposition{50, 950, 50, 950);

gid = winopen("Arcball Demo"};

doublebuffer () ;

RGBmode () ;

gconfigl();

gdevice (MOUSEX); gdevice (MOUSEY) ; gdevice (LEFTMOUSE) ;
gdevice (LEFTCTRLKEY) ; qdevice(RIGHTCTRLKEY);
gdevice (LEFTSHIFTKEY) ; gdevice (RIGHTSHIFTKEY) ;
gdevice (CAPSLOCKKEY) ; gdevice (WINSHUT) ;

/* perspective (400, 1.0, 0.001, 100000.0); */
ortho(-1.0, 1.0, -1.0, 1.0, 0.001, 100000.0);
translate (0.0, 0.0, -3.0);

active = 0;

getsize{&winsize.x, &winsize.y);
getorigin (&winorig.x, &winorig.y);
keysDown = 0;

Ball_Init (&ball);
Ball_Place(&ball, gOne, RADIUS);

while (TRUE) {
while (qtest()) { /* process gueued events */
dev = gread(&val);
switch (dev) |
case WINSHUT: /* exit program */
gexit ();
exit (0);
break;
case INPUTCHANGE:
active = val;
break;
case REDRAW:
reshapeviewport () ;
getsize(&winsize.x, &winsize.y);
getorigin(&winorig.x, &winorig.y);

break;
case MOUSEX:
mouseNow.x = val;
vNow.x = 2.0* (mouseNow.x - winorig.x)/winsize.x - 1.0;
break;
case MOUSEY:
mouseNow.y = val;
vNow.y = 2.0* (mouseNow.y - winorig.y)/winsize.y - 1.0;

break;

case LEFTMOUSE:
if (val) Ball_BeginDrag(&ball);
else Ball_EndDrag(&ball);
break;

case LEFTCTRLKEY:
(keysDown&~CNTRLDN) | {(val? CNTRLDN : 0);

keysDown =
break;

1.1 Arcball Rotation Control

case RIGHTCTRLKEY:

case LEFTSHIFTKEY: case RIGHTSHIFTKEY:

keysDown =
break;

case CAPSLOCKKEY:

(keysDown&~SHIFTDN) | (val? SHIFTDN : 0);

if (val) Ball_ShowResult (&ball);
else Ball_HideResult (&ball) ;

break;
default:
break;

}

/* end of switch */

Ball Mouse(&ball, vNow):;

switch (keysDown) {

case CNTRLDN+SHIFTDN: Ball_UseSet(&ball, OtherAxes);

case CNTRLDN:

case SHIFTDN: Ball_UseSet

default:

}
Ball_ Update(&ball);
scene_Draw (&ball):
swapbuffers();

}

/* NOT REACHED */

break;
&ball, BodyAxes); break;
&ball, CameraAxes); break;
break;

(
Ball_UseSet {
(
Ball_UseSet (&ball, NoAxes);

/* end of while on gtest */

/* draw into the back buffer */
/* and show it in the front buffer */

/* Draw whole window, including controller. */

void scene_Draw(BallData *ball)
{
RGBcolor (0, 0, 0);
clear();
body_Draw{ball});
Ball_Draw(ball);
}

/* Draw the object being controlled. */

void body_Draw(BallData *ball)
{
HMatrix mNow;
Ball_value(ball, mNow);
pushmatrix();
multmatrix (mNow) ;

scale (RADIUS, RADIUS, RADIUS);

drawbody (mNow) ;
popmatrix();

}

/***** EOF *****/

191

192 & Transformations

¢ Bibliography <

(Chen et al. 1988) Michael Chen, Joy S. Mountford, and Abigail Sellen. A study in
interactive 3-d rotation using 2-d control devices. Computer Graphics, 22(4):121-
129, August 1988. Proceedings of SIGGRAPH ’88.

(Hanson 1992) Andrew J. Hanson. The rolling ball. In David Kirk, editor, Graphics
Gems III, pages 51-60. Academic Press, Boston, 1992.

(Hultquist 1990) Jeff Hultquist. A virtual trackball. In Andrew Glassner, editor, Graph-
ics Gems, page 462. Academic Press, Boston, 1990.

(Shoemake 1985) Ken Shoemake. Animating rotation with quaternion curves. Com-
puter Graphics, 19(3):245-254, July 1985. Proceedings of SIGGRAPH ’85.

(Shoemake 1992) Ken Shoemake. Arcball: A user interface for specifying three-
dimensional orientation using a mouse. In Proceedings of Graphics Interface 92,
pages 151-156, 1992.

Q1.2

Efficient Eigenvalues for
Visualization

Robert L. Cromwell

School of Electrical Engineering
1285 Electrical Engineering Building
Purdue University

West Lafayette, IN 47907-1285
cromwell @ecn.purdue.edu

There are many applications for the efficient visualization of a cloud of independently
moving points or small objects flowing through 3D space in a fashion similar to a
virtual swarm of bees or school of fish. For instance, in gas or particle dynamics it is
important that the user clearly see the overall motions of such a cloud. In biochemistry
or molecular biology, the viewer of a simulated reaction or biological process wants to
clearly see complex interactions within a constantly flowing cloud of molecules. As a
general rule of thumb, the “best” viewpoint is one from which the swarm of points
is most spread out—a viewpoint from which the distribution is of minimal thickness.
What’s more, the alignment of the individual objects or swarm with respect to a world
coordinate system is generally of no concern. In other words, there is no “up” at the
scale of molecular biology. For these reasons, the most effective visualization tool might
be one in which the viewpoint automatically changes from frame to frame, constantly
tracking a path of optimal viewpoints.

Treating the swarm of objects as a 3D distribution of points, this optimal view di-
rection is defined by an eigenvector of the matrix of central moments; specifically, the
eigenvector associated with the eigenvalue of smallest magnitude. One might informally
say that the direction of that eigenvector is the direction along which the distribution
exhibits minimal thickness, and so a desirable viewpoint lies along a line parallel to that
eigenvector and passing through the distribution’s centroid. Therefore, it is crucial to
update the eigenvalues, and thus the eigenvectors, of the distribution with each frame.
It follows that eigensystem analysis of a 3 x 3 matrix must be done efficiently. Once
the eigenvalues have been found, it is a simple matter to find the eigenvectors through
Gaussian elimination. The difficulty lies in efficiently determining the eigenvalues.

Figure 1 shows a 2D view of two interacting clusters of methane molecules. In the
interest of simplicity, let’s assume that a visualization system must select a viewpoint
within this 2D plane, so that it can produce a useful 1D projection of the 2D distribu-
tion. This allows us to present an unambiguous example on the written page, and the

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

193 Macintosh ISBN 0-12-336156-7

194 < Transformations

Figure 1. A distribution of particles with eigenvectors and a selected viewpoint.

extension to producing a 2D view of a 3D distribution is a simple one. The eigenvectors
of the distribution are shown as solid arrows, and the line along which the selected
viewpoint should lie is shown as a dotted line.

The standard approaches use an iterative approach; e.g., the algorithms described in
Numerical Recipes in C (Press et al. 1988). However, if the problem is constrained as
in the application described here, such that one knows that the eigenvalues will be real,
then it is possible to use a bit of algebra and trigonometry to express the eigenvalues
as explicit functions of the terms of the matrix of central moments, allowing the direct
computation of the eigenvalues. Recall that A, the matrix of central moments for a

collection of n 3D points [z, y:, z:]T, with centroid [Z,§, 2|7, is defined as:
[a11 a2 a3
A = | an ax ap (1)
azr asz ass
Swi—2)(@i—2) Y (@i—)(yi—§) Y (xi—7)(2—2)
i=1 i=1 i=1
= | Sw-9@i-2) D wi-0w-9 Y (y-y(a-2) (2)
i=1 i=1 i=1
L Sai—2)(wi-1) D (-2wi—7) Y (2 2)(zi—2)
i=1 =1 i=1 _

II1.2 Efficient Eigenvalues for Visualization { 195

= Z (v —9) | (@i —2), (yi =), (2 — 2)] (3)

In short, our method explicitly computes the eigenvalues of the 3 x 3 matrix A
directly from the terms of that matrix. It offers a 5:1 increase in computational speed
over the usual approach, and it is much simpler to implement. To find the eigenvalues of
100,000 3 x 3 matrices and then calculate the eigenvectors by Gaussian elimination, our
method required 10.2 CPU seconds on a Sun 4/50MX-16; iterative algorithms (Press
et al. 1988) required 51.3 CPU seconds. For those uninterested in the mathematical
details, we suggest skipping to the final paragraph, which summarizes the equations
to be implemented. For those interested in the details, we derive our method in the
following paragraphs.

The eigenvalues of a square matrix A are the roots of the equation det(AI — A) = 0.
The first step in our direct computation method is to evaluate the explicit form of the
determinant. This yields a cubic equation, which can be solved by a simple trigonomet-
ric method. The final result is a set of trigonometric expressions directly yielding the
eigenvalues of a 3 x 3 matrix. In the method described here, we point out some simplifi-
cations that can be made in the computation of the terms of the determinant expansion
and in the trigonometric analysis, yielding increased computational efliciency.

The first step is the expansion of the determinant:

A—ai1n —ai2 —a13
det(NI—A) = —az A—ax» —az (4)
—asy —a3z2 A —ass

Multiplying through, and gathering terms of the same degree of A, we find that:

det(ML— A) = X+ [—a11 — az — ass] A
+ [a11a22 + a11a33 + a20a33 — a23a32 — a12a21 — a13a31] A
+ [—a11022033 + a11a23a32 + G12021a33 — A12023031 (5)
—a13a21032 + A13022031]
= M4+pX 4o+ (6)
To make the calculations of the terms p, q, and r more efficient, one should first note
that A, the matrix of central moments, is symmetric, and so the three matrix terms aso1,

a3y, and azz need not be calculated. Second, note that g and r share some products. In
the actual implementation, one would first calculate the following intermediate terms: .

C = a11a22 (7)

d= a23a32 (8)

196 < Transformations

e = a1aa (9)
[=azan (10)
Now ¢ and r may be calculated much more efficiently:
—ai1 — a2z — as3 (11)
= ¢+ (a1 tax)asz—d—e—f (12)
= (e — c)ags + dai1 — 2(a12a23a31) + faoe (13)

Explicit calculation of the three terms p, ¢, and r, as in Equation 5, would have required
18 multiplications and 12 additions. The method of Equations 7-13 requires only 11
multiplications and 11 additions.

Given p, g, and r, we must simply solve a cubic equation in A. As described in (Beyer
1978), we first reduce the cubic equation to:

2 +ar+b=0 (14)
by the substitutions
A+p/3 (15)
= q¢-p/3 (16)
b = 2p°/27—pq/3+7 (17)

To solve for the roots by the trigonometric method, we calculate 6 as
1 3b
S —cos_l(—> (18)
3 am

where

m = 2y/—a/3 (19)

Note that |3b/am| < 1 and a < 0 because A is a matrix of central moments. We could
solve for the three roots x; as:

1 = m cos(f) (20)
ro = m cos(f+ 27/3) (21)
x3 = m cos(f+4n/3) (22)

Resubstituting the values found in Equations 20-22 into Equation 15 would then yield
the desired eigenvalues.

A1 = m cos(f) —p/3 (
Ao = m cos(f+27w/3) —p/3 (
A3 = m cos(f+4m/3) —p/3 (

N NNN
Ot o> W
R

111.2 Efficient Eigenvalues for Visualization < 197

As it is formulated here, in a form equivalent to that in (Schwarze 1990), the calcula-
tion of the three eigenvalues requires the calculation of one square root, in Equation 19,
and the calculation of four trigonometric functions, in Equations 18, 23, 24, and 25.
However, this can be made more computationally efficient. We know that

cos(a +) = cos(a) cos(8) — sin(a) sin(3) (26)

The 3 terms in Equations 24 and 25 are known constants, 27/3 and 47/3, so their
trigonometric functions are themselves constants which can be pre-computed. An opti-
mized algorithm would first calculate cg and sp:

cp = cos(8) (27)
sg = sin(6) (28)
We can now reformulate the eigenvalues more efficiently as:
A = mey—]—; (29)
c 3s
e = m —‘i%—"} —g (30)
As = m {CL}@} _ g (31)

Assuming that the /3 terms in Equations 30 and 31 are pre-computed and stored
as constants, we now must calculate only one square root, in Equation 19, and three
trigonometric functions, in Equations 18, 27, and 28. If one uses the C function
sincos () to simultaneously calculate both cg and sg, then only two trigonometric
function calls are needed.

To summarize our method for explicit eigenvalue computation, Equations 7-13 are
used to calculate efficiently the terms p, ¢, and r. Those values are then used to find
a, b, and m, and thus 0, cg, and sg, as in Equations 16-19, 27, and 28. Then, the
eigenvalues); are directly computed from m, cg, sg, and p as in Equations 29-31. Given
the eigenvalues, the desired eigenvector is then easily found by Gaussian elimination.

{ Bibliography ¢
(Beyer 1978) William H. Beyer. CRC Standard Mathematical Tables. CRC Press, West
Palm Beach, FL, 1978.

(Press et al. 1988) William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C, The Art of Scientific Comput-
ing. Cambridge University Press, Cambridge, England, 1988.

198 < Transformations

(Schwarze 1990) Jochen Schwarze. Cubic and quartic roots. In Andrew S. Glassner,
editor, Graphics Gems, pages 404-407. Academic Press, Boston, 1990.

1.3

Fast Inversion of Length- and
Angle-Preserving Matrices

Kevin Wu

SunSoft

2550 Garcia Avenue

Mail Stop UMTV10-115
Mountain View, CA 94043-1100
kevin.wu@eng.sun.com

This Gem describes methods for quickly inverting 4 x 4 matrices that preserve lengths
and angles. Matrices of these types frequently arise in 3D computer graphics. The
distance between two points is invariant after transformation by a length-preserving
matrix; likewise for the angle between two vectors and an angle-preserving matrix. Pro-
grammers can use these methods within the fast matrix inversion framework described
in a previous Gem (Wu 1991), or simply in situations where a program handles matrices
without perspective and anisotropic scaling.

¢ Properties and Matrix Forms ¢

Methods for quickly inverting length- and angle-preserving matrices are immediately
apparent once their forms are explicitly known. Unlike the previous Gem (Wu 1991),
we adopt the convention of representing points with column vectors to conform with a
well-known graphics textbook (Foley et al. 1990). The two conventions are related by
matrix transposition.

The Length-Preserving Matrix Group P;

Theorem 1 A 4 x 4 homogeneous matrix M preserves lengths if and only if it has the
block matrix form

we[3 5

where A is the 3 x 3 upper left submatrix, C is the 3 x 1 upper right submatrix, 0 is
the 1 x 3 lower left submatrix of zeros, and A is orthogonal: A~! = AT,

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9
199 Macintosh ISBN 0-12-336156-7

200 <& Transformations

Proof 1 Let p; and p2 be two points

1 I
Pi=| W P2= 1 Y2
21 Z9

The square of the distance between the two points is given by the inner product of the
difference with itself.
T
r’ = (p2 —p1)” (P2~ P1) (1)
A matrix with perspective does not preserve lengths in general. Consider a general 4 X 4
homogeneous matrix
A C
M- o]
where B is the 1 x 3 lower left submatrix and D is the 1 x 1 lower right submatrix,
which is a scalar. After transforming p; and pe by this matrix and dividing by the
homogeneous coordinate, the length-preserving condition requires that

5 (Ap2+c_Ap1+C)T<Ap2+c_Ap1+C)
Bp.+D Bpi+D Bp:+D Bpi+D

which is the square of the distance between the two transformed points. In general, this
condition cannot be satisfied by two arbitrary points p; and ps when B # 0; hence, the
length-preserving condition requires that B = 0. D is a nonzero scaling factor because
all points are transformed to infinity if D = 0. We can simply divide the matrix by D
without changing the effective geometric mapping because D scales the w component of
transformed points, and we eventually divide the other components by that component.
This means that D can always be set to 1. Therefore M is affine, and it can be written

AC]

M:{o 1

Given that M preserves lengths, we must show that A is orthogonal. M preserves
lengths so the distance between the points after transformation is the same as before.

r2 = ((Ap2+C)— (Ap; +C))"((Ap2 + C) — (Ap1 + C)) (2)
= (A(p2 —p1)) (A(p2—p1)) (3)
= (p2—p1) ATA(p2 — p1) (4)

Given that M preserves lengths, Equations 1 and 4 are equal for all p; and p2. This
condition can be satisfied only when ATA =Tor A~} = AT.

The converse (given a matrix with the form shown above implies that the matrix
preserves lengths) is straightforward to prove, so this part of the proof is not included
here for brevity.

111.3 Fast Inversion of Length- and Angle-Preserving Matrices < 201

The basic matrices that are members of the length-preserving matrix group include
translations, rotations, and reflections. We can write this as follows:

{T(ts, ty,t.), R, S(£1,£1,£1)} C P,

where T(ts,ty,t,) is a translation matrix, R is a rotation matrix in (z,y, z) coordinate
space, and S(s;, sy, $;) is a scale matrix. Any matrix composed of the concatenation
of any combination of only these matrices for translations, rotations, and reflections
preserves lengths.

A program can identify length-preserving matrices in a number of ways, including
the following examples:

e A priori: A program knows in advance that a particular matrix is the concatenation
of only translation, rotation, and reflection matrices.

e Groups: A program keeps track of each matrix by maintaining an associated record
of memberships to matrix groups (Wu 1991).

e Form: A program checks that a particular matrix has the form stated in Theorem 1.
The matrix must be affine, which can be confirmed by checking the last row. Then
the program calculates the product AT A and checks that it is the identity matrix I.
In practice, provision should be made for roundoff errors arising from floating-point
calculations.

e Eigenvalues: A program checks the eigenvalues of A after confirming that the matrix
is affine. A is an orthogonal matrix, or more generally, a unitary matrix. A property
of unitary matrices is that the modulus of every eigenvalue X is one: |A| = 1; in other
words, all eigenvalues lie on the unit circle in the complex plane (Strang 1988). For
example, the eigenvalues of a 2D rotation matrix are e and e, where i = /—1
and @ is the angle of rotation in radians. In practice, this method of identification is
likely to be slower than any of the examples above. Calculation of the eigenvalues of
A requires the solution to the cubic characteristic equation, which involves square
and cubic roots (Spiegel 1968). In general, one eigenvalue is 1 or —1 and the other
two are either complex conjugates or both 1 or —1.

The Angle-Preserving Matrix Group P,

Theorem 2 A 4 x 4 homogeneous matrix M preserves angles if and only if it has the
block matrix form

w[3 ¢

0 1

where A is the 3 x 3 upper left submatrix, C is the 3 x 1 upper right submatrix, 0 is
the 1 x 3 lower left submatrix of zeros, A = sQ, s # 0 is a scalar, and Q is orthogonal:

Q—l — QT.

202 <& Transformations

Proof 2 Let v; and vy be two nonzero direction vectors
vi=[z1 y1 &) ve=[x2 ¥2 2]

The cosine of the angle between the two vectors is given by the inner product of the

normalized vectors. T
Vi V2
cosf = — (5)
[vall [[vzll
vlvg

= (6)
VviviT)(vevaT)

It is intuitive and straightforward to prove that a matrix with perspective does not
preserve angles in general. (This part of the proof is slightly more involved than the
length-preserving case, but it is similar so it is not included here for brevity.) Therefore
M is affine, and it can be written

s[4 6]

0 1
Since v; and vq are direction vectors, only the submatrix A applies to them for trans-
formation (Turkowski 1990).

Given that M preserves angles, we must show that A = sQ where s is a nonzero
scalar and Q is orthogonal. M preserves angles so the angle between the vectors after
transformation is the same as before.

(viA) (va)T
[viA] [[v2A]l
VlAATVQT

- 8
JVIAATY) (v AATV,T) ®

(7)

cos 8

Given that M preserves angles, Equations 6 and 8 are equal for all vi and vg. This con-
dition can be satisfied when AAT =TI or A~! = AT, However, this restriction is more
confining than necessary because a nonzero scalar can be introduced without affecting
equality since the constant cancels in the numerator and denominator of Equation 8.
So we take as our restriction A = sQ where s is a nonzero scalar and Q1=qQ".

The converse (given a matrix with the form shown above implies that the matrix
preserves angles) is straightforward to prove, so this part of the proof is not included
here for brevity.

The basic matrices that are members of the angle-preserving matrix group include
translations, rotations, and isotropic scalings (possibly with reflections). We can write

this as follows:
{T(tz,ty,t.), R, S(%s, £s,£s)|s # 0} C P,

I11.3 Fast Inversion of Length- and Angle-Preserving Matrices { 203

Any matrix composed of the concatenation of any combination of only matrices for
translations, rotations, and isotropic scalings preserves angles. The length-preserving
matrix group with scale factor s = 1 is a subgroup of the angle-preserving matrix group;
a matrix that preserves lengths also preserves angles.
Methods of identifying angle-preserving matrices are similar to those for length-
preserving matrices.
e A priori: A program knows in advance that a particular matrix is the concatenation
of only translation, rotation, and isotropic scale matrices.
e Groups: A program keeps track of each matrix by maintaining an associated record
of memberships to matrix groups.
e Form: A program checks that a particular matrix is affine and the product of A
with its transpose is a scalar times the identity matrix: AAT = s%L.
e Eigenvalues: A program checks that a particular matrix is affine and that the moduli
of all eigenvalues of A equal the same constant: |A| = s.

¢ Fast Inversion Techniques <

The block matrix forms for length- and angle-preserving matrices are important for
deriving fast inversion techniques. Inverses of block matrices often arise in the theory of
linear systems (Kailath 1980). The following form is applicable to 3D affine matrices:

A C J‘l 3 [Al —A'CB™! }

-1
M _{0 B 0 B!

This holds for any square submatrices A and B as long as their inverses exist. For our
affine matrices, we let A be the 3 x 3 upper left submatrix of M and B be 1. Then this
result simplifies to

A C]1 3 { Al —AT'C J

-1 _
M _[01 0 1

For an angle-preserving matrix, A is the product of a nonzero scalar with an orthog-
onal matrix: A = sQ. The inverse of A can be written as

A—l — (SQ)—I _ 8—1Q~1 — S*lQT - S—Q(SQ)T — S*ZAT
The inverse of an angle-preserving matrix is given by

sT2AT —s2ATC

Al_
M= 0 1

The isotropic scale factor of A is s. Within the framework of the previous Gem for
fast matrix inversion (Wu 1991), a program can keep track of the isotropic scale factor,

204 <& Transformations

which changes only when the program concatenates an isotropic scale matrix or when
it inverts the matrix. Alternatively, if M is known to preserve angles, the isotropic scale
factor can be calculated as the length of any row or column of A since the length of
any row or column of an orthogonal matrix is 1.

A length-preserving matrix also preserves angles, and the isotropic scale factor is
always s = 1. Therefore, the inverse of a length-preserving matrix is given by

AT —ATC

-1 _
M™ = 0 1

The fast inversion method for 4 x 4 affine matrices (Wu 1991) requires 48 multi-
plications and 2 divisions; it is applicable to affine matrices with anisotropic scaling.
The method for angle-preserving matrices can be performed with 19 multiplications
and 1 division provided that the isotropic scale factor is known; otherwise, an addi-
tional 2 multiplications are needed. The method for length-preserving matrices takes 9
multiplications.

If the purpose of inverting a 4 x 4 matrix belonging to the affine, angle-preserving,
or length-preserving matrix groups is to transform normal or direction vectors, then a
program only needs to compute the inverse of the 3 x 3 upper left submatrix A. This
requires nine fewer multiplications in each of the operation counts stated above.

¢ CCode ¢

#include "GraphicsGems.h"

#include <stdio.h>
/****

* angle_preserving_matrixd_inverse
* Computes the inverse of a 3D angle-preserving matrix.

* This procedure treats the 4 by 4 angle-preserving matrix as a block
* matrix and calculates the inverse of one submatrix for a significant
* performance improvement over a general procedure that can invert any
* nonsingular matrix:

* -— - -

* | | -1 | -2 T -2 T

* | A C | I s A -s A C|
* -1 | | |

* M = | | = | |
* I 0 11 | 0 1 |
* | | | |
* - J— N —
* where M is a 4 by 4 angle-preserving matrix,

* A is the 3 by 3 upper left submatrix of M,

* C is the 3 by 1 upper right submatrix of M.

& 205

111.3 Fast Inversion of Length- and Angle-Preserving Matrices

*

* Input:

* in - 3D angle-preserving matrix

*

* Qutput:

* out -~ inverse of 3D angle-preserving matrix

* Returned value:
* TRUE if input matrix is nonsingular

* FALSE otherwise
*

* ok /

boolean

angle_preserving_matrixd4_inverse (Matrix4 *in, Matrix4 *out)

{

double sgcale;

/* Calculate the sqguare of the isotropic scale factor */

scale = in->element[0]1[0] * in->element[0][0] +
in-»element [0] [1] * in->element[0][1] +
in-»element [0] [2] * in-»element[0][2];

/* Is the submatrix A singular? */
if (scale == 0.0) {

/* Matrix M has no inverse */
fprintf (stderr, "angle_preserving_matrix4_inverse:
return FALSE;

singular matrix\n");

/* Calculate the inverse of the square of the isotropic scale factor */
scale = 1.0 / scale;

/* Transpose and scale the 3 by 3 upper left submatrix */
out->element [0] [0] = scale * in-»element[0][0];
out->element [1]{0] = scale in-»element (0] [1];
out ->element [2] = scale in-»element [0]
out->element [0] = scale * in-selement (1l
out-»element [1 }] = scale * in-»element[1l
out->element [2] = scale * in-»element (1
out->element [0] = scale * in-»element(2
1] = scale * in-»element (2
[2] = scale * in-»element[2

out->element
out-»element

11]
1[o 1
111]
11 1
111]
12]
112]
102]

/* Calculate - {transpose(A) / s*s) C */
out-»element (0] (3] = - (out-»element|
out->element

* in-»element
in->element

*

out->element [1] (3]

out->element (2] [3]

{ out-»element [2

out-»element
out->element |

0
[0
out->element [0
1
1
out-»element [1

1101
111]
1121
110]
1[1]
1[2]
1001

L

*

[01[3
[11[3
in-»element [2] [3
in-»element [0] [3
in-»element {1][3
in->element [2][3

(01103

]+
] o+
1)
1 +
]+
1)
in->»element 1 +

206 < Transformations

out->element[2][1] * in->element[1][3] +
out->element {2][2] * in->element{2][3])

/* Fill in last row */
out~»element [(3]1[0] out->element [3] [1] = out->element[3][2] = 0.0;
out->element [3] (3] 1.0;

uon

return TRUE;

¢ Bibliography <

(Foley et al. 1990) James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice, second edition. Addison-
Wesley, Reading, MA, 1990.

(Kailath 1980) Thomas Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, NJ,
1980.

(Spiegel 1968) Murray R. Spiegel. Mathematical Handbook of Formulas and Tables.
Schaum’s QOutline Series in Mathematics. McGraw-Hill, New York, NY, 1968.

(Strang 1988) Gilbert Strang. Linear Algebra and Its Applications, third edition. Har-
court Brace Jovanovich, San Diego, CA, 1988.

(Turkowski 1990) Ken Turkowski. Properties of surface-normal transformations. In An-
drew S. Glassner, editor, Graphics Gems, pages 539-547. Academic Press, Boston,
MA, 1990.

(Wu 1991) Kevin Wu. Fast matrix inversion. In James Arvo, editor, Graphics Gems
11, pages 342-350. Academic Press, Boston, MA, 1991.

111.4

Polar Matrix Decomposition

Ken Shoemake

University of Pennsylvania
Philadelphia, PA
shoemake @graphics.cis.upenn.edu

¢ Introduction <

Extracting meaning from matrices is a compelling challenge, judging by the number
of previous Gems on the subject. Affine matrices are especially awkward to dissect
(Thomas 1991, Goldman 1992). A combination of rotating, scaling, shearing, and trans-
lating will generate any affine transform. Yet while a rotation, say, has a simple geo-
metric meaning by itself, the rotation chosen by these previous Gems generally does
not—as a factor. Since it is entirely dependent on the basis chosen to express the
transformation as a matrix, the decomposition forfeits any claim of being geometrically
meaningful. There is, however, an alternative: a physical, intuitive way to decompose
an affine matrix. It is based on the linear algebra polar decomposition. The text of this
Gem sketches the theory and benefits of polar decomposition,! and the code gives a
sample implementation.

Why does it matter if a decomposition is geometric, and what does it mean? It may
not matter if, for example, you simply need to recreate the effect of a given matrix
using a graphics library with a limited choice of primitives. But if a human being
is going to try to interpret the results, or if an animation program is going to try
to interpolate the results, it matters a great deal. A good decomposition will give
interpretations and interpolations that correspond to our perceptually based intuitions.
Physics and psychology suggest two important criteria: coordinate independence and
rigidity preservation. The first of these is the minimum needed for decomposition to
have true geometric meaning.

Coordinate independence is an elaborate name for a simple observation. So far as we
can tell, the universe has no built-in coordinate system. There is no special direction to
call z or y, no self-evident unit of distance, no designated origin. The implication for
matrix decomposition is that the results should not depend on the particular coordinate
basis used, so long as the axes are perpendicular and scaled the same in all directions.
In mathematical terms this has the following consequence. Suppose M is a linear trans-
formation in one such basis, and M’ is the same transformation expressed in another,

1See (Shoemake and Duff 1992) for a longer discussion.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

207 Macintosh ISBN 0-12-336156-7

208 < Transformations

so that M/ = BMB™!. Now suppose M and M’ decompose as, say, M = QS and
M’ = Q'S’. Then we should find that Q' = BQB™! and 8’ = BSB™'. The Thomas
and Goldman decompositions fail this test.

The second test, rigidity preservation, is more subtle and less certain, but important
nevertheless. A variety of experiments in psychology give compelling evidence that the
human visual system will interpret motion as rigid motion if possible. All rigid motion
consists of rotations and translations, so this is a stringent demand, and not always
possible. We can only say that, to the extent we can decompose a transform rigidly, we
should do so. The Thomas and Goldman decompositions also fail this test.

¢ Polar Decomposition <

The polar form of a non-zero complex number z = re? consists of two factors: a
positive scaling r, and a rotation e?. The polar decomposition of a non-singular matrix
M = QS also consists of a positive scaling S, and a rotation Q, with two quibbles. The
first quibble is that the S factor is a little more general than the usual scale matrix, since
it need not be diagonal. Formally, it is a symmetric positive semi-definite matrix, which
means it is only diagonal in some orthonormal basis, and has positive (or zero if M is
singular) scale factors that can differ from each other. There is no standard computer
graphics name for such a matrix, but I call it a stretch matrix, since it reminds me of
cartoon animation’s squash and stretch. The second quibble is that the Q factor is not
necessarily a rotation. It is a more general orthogonal matrix (which can reflect as well
as rotate), having a determinant of the same sign as M. Quibbles aside, the motivation
for the name should be clear.

Polar decomposition is ideally suited for our purposes, for three reasons. First, it is
coordinate independent, so it tells us about the transformation in physically meaningful
terms. Second, any non-singular matrix M has a unique polar decomposition, and Q is
as close to M as possible,? equaling M if M is orthogonal. Thus, to the extent possible,
rigidity is preserved. Third, it is simple to calculate. The Q factor can be obtained
by setting Qo = M, then iterating Q;11 = (Qi + (Q;')T)/2 until there is negligible
change. An earlier Gem (Raible 1990) gives another application and a fast approximate
calculation method, though polar decomposition is not explicitly mentioned.

& Decomposing an Affine Transformation <

We know that any 3D affine transformation can be factored as a 3D linear transfor-
mation followed by a translation. To find the translation, transform the zero vector.
Assuming the transformation is given as a homogeneous matrix that acts on column

2Closeness can be measured using the sum of the squares of the element differences.

I11.4 Polar Matrix Decomposition < 209

vectors, this step is trivial: strip off the last column of the matrix. This is the factor-
ization A = TM. Then find the polar decomposition of M, so we have A = TQS.

We could stop here, but more often we will want to further decompose the Q and S
factors. If Q is not a rotation, it must be the negative of one (since 3 is an odd number
of dimensions). Thus we can factor Q = FR, where R is a rotation and F (for flip) is
+I . If Q is a rotation, det(Q) = +1, otherwise det(Q) = —1, so this factorization is
easy to compute. Since a rotation matrix can easily be described with a quaternion or
an axis and angle, we will not decompose it further.

As noted above, the S factor is symmetric positive semi-definite. Thus it has a spectral
decomposition S = UKUT, where U is a rotation and K (for scale) is diagonal with
positive or zero entries. The scaling is usually non-uniform, i.e., different along each
coordinate axis.> For human comprehension and simpler primitives, it will be helpful
to include this extra step.

Be aware, however, that the spectral decomposition is not unique. Although S as a
whole has geometric significance, its U and K factors are more ambiguous. Changing the
labels and reversing the directions of the axes along which S is diagonalized? changes U
and K, but not the product UKUT. I suggest picking the U with the smallest rotation
angle; but consult (Shoemake and Duff 1992) for a more extended discussion of polar
and spectral decomposition in the context of animation.

We now have a complete decomposition, M = TQS = TFRUKUTY. As a reality
check, let’s count degrees of freedom. The original matrix, A, has 12 freely chosen
entries, and so 12 degrees of freedom. The flip F is only a sign choice, so it contributes
no degrees of freedom. The rotations R and U each have three degrees of freedom, as
do the scaling K and the translation T. (We count U only once, though it’s used twice.)
Thus we exactly match the needed degrees of freedom.

¢ Implementation <

Complete TFRUKUT factoring requires computing polar and spectral decompositions.
If you already have a singular value decomposition routine, you can use its results to
do both. The SVD of M has the form VKUY, directly giving U and K, and indirectly
giving Q = VUT. (It may be necessary to negate U and V to ensure that U is a
rotation.) Though SVD routines are complicated, they are also reliable.

But you don’t need SVD code. If you have a symmetric eigenvalue routine (another
name for spectral decomposition), you can use it instead. Decompose MM as UDUT,
where D is diagonal, and compute K from D by taking the positive square root of each
entry. Then if M is non-singular, Q can be computed as MUK 'U". This approach

3The scale factors are the eigenvalues of S and the singular values of M.
4The axis directions are the eigenvectors of S.

210 < Transformations

should be used with caution, for K has no inverse if M is singular, and some accuracy
will always be lost.

As mentioned earlier, however, the simplest approach is to set Qg = M, then iter-
atively compute Q;1+1 = (Q; + (Q;1)T)/2 until the difference between the entries of
Q; and Q41 is nearly zero. (By definition an orthogonal matrix satisfies QTQ = I,
so Q = (Q™1)T.) When M is already nearly orthogonal, this iteration will converge
quadratically, but the code given below includes a trick (Higham and Schreiber 1988)
to accelerate convergence when there are large scale factors.

A singular M need only be a nuisance for this code, not an impenetrable barrier; but
a spectral decomposition will still be needed after computing S = QTM. Since S has
a characteristic polynomial which is only cubic, its roots (the diagonal of K) can be
found in closed form. But accuracy requires care, and U must still be found; so instead,
try the method of Jacobi. A series of plane rotations U; will force S to converge to
diagonal form: U} ... UTUTSU,U;--- U, = K; then U = U;U,---U,,.

¢ Decomposing the Inverse <

If A has been factored as TFRUKUT | it is cheap to compute its inverse. The derivation
begins by distributing inversion to each of the factors:

(TFRUKUT)™! = (UT)"'K'U'RIFIT L,
Since U and R are orthogonal and F is its own inverse, this simplifies to
UK 'UTRTFTL.

These matrices are easy. The inverse of K = Scale(kz, ky, k.) is Scale(k; !, k1, k1),
The inverse of T = Translate(t,,t,,t,) is Translate(—t;, —t,, —t.). In the event we have
stored the rotations as quaternions, we simply conjugate them.

If we only need the inverse as a matrix, we multiply everything and quit. But if we
want it in the form A~! = T'F'R/U’K'(U’)T, we must manipulate our terms into the

correct order. First, premultiply by RTR, which is the identity, and regroup to obtain
RT(RU)K ' (RU)TFT.

Now F commutes with everything, so we can move it to the front and identify the terms
F =F,R =RT, U =RU, and K' = K.

This gives us the form M'T~!, but what we really want is T'M’. To order the
translation correctly, we take T’ = Translate(—M'T), where T = Translate(T).

I1l.4 Polar Matrix Decomposition < 211

¢ Code ¢

/**** Decompose.h - Basic declarationg ****/

#ifndef _H_Decompose

#define _H_Decompose

typedef struct {float x, vy, z, w;} Quat; /* Quaternion */

ernilum QuatPart {X, Y, Z, W};

typedef Quat HVect; /* Homogeneous 3D vector */

typedef float HMatrix[4]1[4]; /* Right-handed, for column vectors */
typedef struct {

HVect t; /* Translation components */
Quat qg; /* Essential rotation */
Quat u; /* Stretch rotation */
HVect k; /* Stretch factors */
float £; /* Sign of determinant */

} AffineParts;

float polar_decomp (HMatrix M, HMatrix Q, HMatrix S);

HVect spect_decomp (HMatrix $§, HMatrix U);

Quat snuggle(Quat g, HVect *k);

void decomp_affine(HMatrix A, AffineParts *parts);

void invert_affine(AffineParts *parts, AffineParts *inverse);
#endif

/**** EOF ****/

/**** Decompose.c ****/
/* Ken Shoemake, 1993 */
#include <math.h>
#include "Decompose.h"

[****xk*x* Matrix Preliminaries ***x**x*/

/** Fill out 3x3 matrix to 4x4 **/
#define mat_pad(A) (A[W] [X]=A[X] [WI=A[W]([Y]=A[Y][W]I=A[W)[Z]=A[Z] [W]=0,A[W])[W])=1)

/** Copy nxn matrix A to C using "gets" for assignment **/
#define mat_copy(C,gets,A,n) {int i,j; for(i=0;i<n;i++) for(j=0;j<n;j++)\
Cli][J] gets (A[i][31);:}

/** Copy transpose of nxn matrix A to C using "gets" for assignment **/
#define mat_tpose(AT,gets,A,n) {int 1i,j; for(i=0;i<n;i++) for(j=0;j<n;j++)\
AT[i][j] gets (A[FI[i]);}

/** Agsign nxn matrix C the element-wise combination of A and B using "op" **/
#define mat_binop(C,gets,A,op,B,n) {int i,j; for(i=0;i<n;i++) for(ji=0;j<n;j++)\
Cli1[3] gets (A[i]1([]]) op (BIi][J1}:}

/** Multiply the upper left 3x3 parts of A and B to get AB **/
void mat_mult (HMatrix A, HMatrix B, HMatrix AB)
{
int 1, j;
for (i=0; i<3; i++) for (j=0; Jj<3; j++)
AB[i](3] = A[i1(01*BI01[3] + A{il[1]*BI1]1[3] + A[il[2)*B[2])({]]:

212 & Transformations

/** Return dot product of length 3 vectors va and vb **/
float vdot(float *va, float *vb)
{
return (va[0]*vb[0] + val[ll*vb[l] + val[2]*vb[2]);
}

/** Set v to cross product of length 3 vectors va and vb **/
void vcross (float *va, float *vb, float *v)

v[0] = val[ll*vb(2] - va[2]*vb([1l];
v[1l] = val[2]*vb[0] - val[0]*vb[2];
v[2] = va[0l*vb({1l] - val[ll*vb[0];

/** Set MadjT to transpose of inverse of M times determinant of M **/
void adjoint_transpose{(HMatrix M, HMatrix MadjT)
{

veross(M[1], M[2], MadjTI[O0]);

vceross{M[2], M[0], MadjTI[1]);

veross (M[0], M[1], MadjT[2]);

/*x*xkx*x Ouaternion Preliminaries ****x*x/

/* Construct a (possibly non-unit) quaternion from real components */
Quat Qt_(float x, float y, float z, float w)

{
Quat qq;
ag.x = X; gd.y = y; d49.2 = zZ; gqd.w = W;
return (qq);

}

/* Return conjugate of quaternion */

Quat Qt_Conj (Quat q)

{
Quat gg;
aqg.Xx = -4g.X; 9d.Y = -9.¥i 49.2 = -d.zZ;7 q4.W = g.wWy
return (gqg) ;

/* Return quaternion product gL * gR. Note: order is important!
* To combine rotations, use the product Mul (gSecond, gFirst),
* which gives the effect of rotating by gFirst then gSecond. */
Quat Qt_Mul (Quat gL, Quat qR)
{

Quat qgq;

qq.w = gL.w*gR.w - gL.x*gR.x - gL.y*gR.y - gL.z*QR.z;
qq.x = gL.w*gR.x + gL.x*QqR.w + gL.y*gR.z - gL.z*qR.y;
gq.y = gL.w*gR.y + gL.y*gR.w + gL.z*gR.x - gL.xX*QR.z;
gg.z = gL.w*qR.z + glL.z*gR.w + gL.x*gR.y - gL.y*qR.x;

return (qd);

1.4 Polar Matrix Decomposition < 213

/* Return product of guaternion g by scalar w */

Quat Qt_Scale(Quat g, float w)

{
Quat qqg;
gqg.w = .W*w; gg.xX = g.X*W; gg.y = J.Y*W; QgQ.z = g.z2*w;
return (gq);

/* Construct a unit quaternion from rotation matrix. Assumes matrix is
* used to multiply column vector on the left: vnew = mat vold. Works
* correctly for right-handed coordinate system and right-handed rotations.
* Translation and perspective components ignored. */
Quat Qt_FromMatrix (HMatrix mat)
{
/* This algorithm avoids near-zero divides by looking for a large component
* -- first w, then x, y, or z. When the trace is greater than zero,
* |w| is greater than 1/2, which is as small as a largest component can be.
* Otherwise, the largest diagonal entry corresponds to the largest of IxlI,
* |y|, or |lzl, one of which must be larger than |wl, and at least 1/2. */
Quat qu;
register double tr, s;

tr = mat[X][X] + mat[Y][Y]+ mat[z][Z];
if (tr »= 0.0) ¢
s = sqgrt(tr + mat[W]([W]);
qu.w = s*0.5;

s = 0.5 / s;

qu.x = (mat[z1[Y] - mat{Y1[z2]) * s;

qu.y = (mat[X][Z] - mat{z] [X]) * s;

qu.z = (mat[Y][X] - mat[X][Y]) * s;
} else {

int h = X;

if (mat(Y]J{Y] > mat[X]1[X]) h

if (mat(Z21{Z2] > mat[h]l[h]) h = Z;

switch (h) {

#define caseMacro(i,j,k,I,J,K) \

case I:\
s = sgrt((mat[I][I] - (mat[J][J]+mat[K][K])) + mat[W][W]);\
qu.i = s8*%0.5;\
s = 0.5 / s;\

i
<

qu.j = (mat[I](J] + mat(J)(I]}) * s;\
qu.k = (mat[K1[I] + mat[I][K]) * s;:\
qu.w = (mat[K][J] - mat[J][K]) * s;\
break

caseMacro(x,y,z,X,Y,Z);
caseMacro(y,z,x,Y,Z,X);
caseMacro(z,x,y.,Z,X,Y);
}
}
if (mat[Wl[W] != 1.0) qu = Qt_Scale(qu, 1l/sqrt(mat(W][W]));
return (qu);

214 < Transformations

/*x*xxkx% Decomp Auxiliaries **x*x+x/

static HMatrix mat_id = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};

/** Compute either the 1 or the infinity norm of M, depending on tpose **/
float mat_norm{HMatrix M, int tpose)

{
int 1i;
float sum, max;
max = 0.0;
for (i=0; 1<3; 1i++) {
if (tpose) sum = fabs(M[0][i])+fabs(M[1][1])+fabs(M[2][1i]);
else sum = fabs(M[i][0])+fabs(M[i][1])+fabs(M[i][2]);
if (max<sum) max = sum;
}
return max;
}

float norm_inf (HMatrix M) {mat_norm(M, 0);}
float norm one (HMatrix M) {mat_norm(M, 1);}

/** Return index of column of M containing maximum abs entry, or -1 if M=0 **/
int find_max_col (HMatrix M)

{
float abs, max;
int i, j, col;
max = 0.0; col = -1;
for (i=0; i<3; i++) for (j=0; J<3; j++) {
abs = M[1]1[j]; if (abs<0.0) abs = -abs;
if (abs>max) {max = abg; col = J;}
}
return col;
}

/** Make u for Householder reflection to zero all v components but first **/
void make_reflector(float *v, float *u)

{

float s = sgrt{vdot{v, v));

ul0] = v([0]; ull]l = vI[1l];

u[2] = v[2] + ((v[2]<0.0) ? -s : 8);

s = sgrt(2.0/vdot{u, u));

u[O] = ul0l*s; ull] = ulll*s; ul2] = ul2]*s;
}

/** Apply Householder reflection represented by u to column vectors of M **/
void reflect_cols(HMatrix M, float *u)
{
int i, j;
for (i=0; 1i<3; 1i++) |
float s = u[0]*M[0])[1] + u[l)*M

(+ uf21*M[2]) [1];
for (3=0; 3<3; j++) M[JI[i] -=u

II.4 Polar Matrix Decomposition < 215

/** Apply Householder reflection represented by u to row vectors of M **/
void reflect_rows (HMatrix M, float *u)
{
int i, j;
for (1i=0; i<3; i++) {
float s = vdot(u, M[1i]);
for (3=0; j<3; Jj++) M[i1[3] -= uljl*s;

)

/** Find orthogonal factor Q of rank 1 (or less) M **/
void do_rankl (HMatrix M, HMatrix Q)
{
float v1[3], v2[3], s;
int col;
mat_copy{(Q,=,mat_id, 4);
/* If rank(M) is 1, we should find a non-zero column in M */
col = find_max_col (M) ;
if (col<0) return; /* Rank is 0 */

1[0} = M[O]{coll; v1[1] = M[1]}[col]); v1([2] = M[2][col];
make_reflector(vl 1); reflect_cols(M vl);
v2[0] = M[2][01; [1 o= M[2]11); v2[2] = M[2]]
make_reflector(vZ 2); reflect_rows (M, v2);

s = M[2]([2];

if (s<0.0) Q(23[2] = -1.0;

reflect_cols(Q, vl); reflect_rows{Q, v2);

}

/** Find orthogonal factor Q of rank 2 {(or less) M using adjoint transpose **/
void do_rank2 (HMatrix M, HMatrix MadjT, HMatrix Q)
{

float v1([3], v2[31}];

float w, x, v, 2z, ¢, s, d;

int 1, J, col;

/* If rank(M) is 2, we should find a non-zero column in MadjT */

col = find_max_col {(MadjT):;

if (col<0) {do_rankl (M, Q); return;} /* Rank<2 */

v1[0] = MadjT[0] [col v1[1l] = MadjT[1l]}[col]l; v1[2]) = MadjT[2][col]l;

1;
make_reflector(vl, vl); reflect_cols(M, vl);
veross (M(0], M[1] v2);
make_reflector(v v2}; reflect_rows(M, v2);
w = M[0][0]; x = [1011 y = M[1]10); z = M[1][1]);
if (wrzex*y) {
c = z+w; s = y-x; 4 = sqgrti{c*c+s*s); ¢ = c¢/d; s = s/d
Qr0]1{0] = QI11[1] = c; QIOJI[1] = -(Q[L1][0] = s);
} else {
¢ = z-w; s = y+xX; d = sqgrt{c*c+s*s); ¢ = c/d; s = s/4d;
Q[0]1[0] = -(Q[11[1) = c); QO}[1] = Q[1][0] = s;

QI0][2] = QI[2])[0] = Q[1][2) = QI[21[1] = 0.0; Q[21[2] = 1.0;
reflect_cols(Q, vl1); reflect_rows(Q, Vv2);

216 ¢ Transformations

/*Fx*Exx Dolar Decomposition ***x**x/

*/

Polar Decomposition of 3x3 matrix in 4x4,

M = QS. See Nicholas Higham and Robert S. Schreiber,
Fast Polar Decomposition of an Arbitrary Matrix,
Technical Report 88-942, October 1988,

Department of Computer Science, Cornell University.

float polar_decomp(HMatrix M, HMatrix Q, HMatrix S)

{

#define TOL 1.0e-6

HMatrix Mk, MadjTk, EKk;
float det, M_one, M_inf, MadjT_one, MadjT_inf, E_one, gamma, tl, t2, gl,

int i, 3;

mat_tpose(Mk,=,M,3);

M_one = norm_one{(Mk); M_inf = norm_inf (Mk);
do {

adjoint_transpose (Mk, MadjTk);
det = vdot(Mk[0], MadjTk[O0]);
if (det==0.0) {do_rank2(Mk, MadjTk, Mk); break;}
MadjT_one = norm_one (MadjTk); MadjT_inf = norm_inf (MadjTk) ;
gamma = sqrt(sqrt((MadjT_one*MadijT_inf)/(M_one*M_inf))/fabs(det));
gl = gamma*0.5;
g2 = 0.5/ (gamma*det) ;
mat_copy (Ek, =,Mk, 3) ;
mat_binop (Mk,=,gl*Mk, +,g2*MadiTk,3);
mat_copy (Ek, -=,Mk, 3} ;
E_one = norm_one (Ek) ;
M_one = norm_one(Mk); M_inf = norm_inf (Mk);
} while (E_one>(M_one*TOL));
mat_tpose(Q,=,Mk,3); mat_pad(Q);

mat_mult (Mk, M, S); mat_pad(S);
for (i=0; i<3; i++) for (j=i; j<3; j++)
S[i1{J] = S[31[i] = 0.5*(S[i]1[j1+S[311il1);

return (det);

g2;

|
|

I1l.4 Polar Matrix Decomposition < 217

[*R**xxFxx Spectral Decomposition *x**xx*/

/* Compute the spectral decomposition of symmetric positive semi-definite S.
* Returns rotation in U and scale factors in result, so that if K is a diagonal
* matrix of the scale factors, then S = U K (U transpose). Uses Jacobi method.
* See Gene H. Golub and Charles F. Van Loan, Matrix Computations, Hopkins 1983.
*/
HVect spect_decomp(HMatrix S, HMatrix U)
{
Hvect kv;
double Diag[3],0ffD[3]; /* OffD is off-diag (by omitted index) */
double g,h, fabsh, fabsOffDi, t, theta,c, s, tau,ta,0ffDg, a,b;
static char nxt[] = {Y,Z,X};
int sweep, 1, j;

mat_copy(U,=,mat_id, 4);

Diag(X] = S[X][X]; DiaglY] = S[Y]I[Y]; Diaglz] = s[z][Z];

OffD[X] = S([Y][2Z]; OffD[Y] = S{2](X]; OffD[z] = S[X][Y];
{

for (sweep=20; sweep>(0; sweep--)
float sm = fabs(OffD[X])+fabs{(OffD[Y])+fabs (OffD[Z]);
if (sm==0.0) break;
for (i=Z; i»=X; i--) {
int p = nxt[i]; int g = nxt[p]l;
fabsOffDi1 = fabs(OffD[i]);
g = 100.0*fabsOffDi;
if (fabsOffDi>0.0)} {
h = Diaglgl - Diaglpl;
fabsh = fabs(h);
if (fabsh+g==fabsh) {
t = OffDI[i]/h;
} else {
theta = 0.5*h/0ffD{i];
t = 1.0/ (fabs(theta)+sgrt(theta*theta+1.0));
if (theta<0.0) t = -t;
}
¢ = 1.0/sgrt(t*t+1.0); 8 = t*c;
tau = s/(c+1.0);

ta = t*OffD([i]; OffDI[i] = 0.0;
Diag[p] -= ta; Diaglqg] += ta;
OffDg = OffDI[qg];
OffD[g] -= s*(OffD{p] + tau*OffD[qgl);
CffD[p] += s*(0ffDg - tau*OffD[pl};
for (j=2; j»=X; j--) {

a = Uljllpl; b =Ul3]lal;

Ul31l[p]l -= s*(b + tau*a);

Ulj])lal += s*(a - tau*b);

}
kv.x = Diag[X]; kv.y = Diag(Y]; kv.z = Diagl[Z]; kv.w = 1.0;
return (kv);

218 ¢

Transformations

JxE*Ak*E grectral Axis Adjustment FxxExkx/

/* Given a unit quaternion, g, and a scale vector, k, find a unit quaternion, p,
* which permutes the axes and turns freely in the plane of duplicate scale
* factors, such that g p has the largest possible w component, i.e., the
* smallest possible angle. Permutes k's components to go with g p instead of qg.
* See Ken Shoemake and Tom Duff, Matrix Animation and Polar Decomposition,
* Proceedings of Graphics Interface 1992. Details on pp. 262-263.

*/

Quat snuggle(Quat g, HVect *k)

{

#define SQRTHALF (0.7071067811865475244)

#define sgn(n,v) {((n)?-(v):(v))

#define swapl(a,i,j) {al3l=alil; alil=aljl; aljl=al3];}

#define cyclel(a,p) 1f (p) {al3l=al0]; al0)=all]; alll=al2]; al2]=al3];:}\

else {a[3]=al2]; al2l=all]l; alll=al0]l; al0)=al3];}
Quat p;
float ka(4]:
int i, turn = -1;
kal[X] = k-»>x; kalY] = k->y; kalZ2] = k->z;
if (ka[X]==kalY]) {if (ka[X]==kal[Z]) turn = W; else turn = Z;}
else {if (ka[X]==kal[Z]) turn = Y; else if (kalYl==kalZ]) turn = X;}
if (turn>=0) {
Quat gtoz, qp;
unsigned neg(3], win;
double mag[3], ¢, s, t;
static Quat gxtoz = {0,SQRTHALF, 0, SQRTHALF};
static Quat gytoz = {SQRTHALF, 0,0, SQRTHALF};
static Quat gppmm = { 0.5, 0.5,-0.5,-0.5};
static Quat gpppp = { 0.5, 0.5, 0.5, 0.5};
static Quat gmpmm = {-0.5, 0.5,-0.5,-0.5};
static Quat gpppm = { 0.5, 0.5, 0.5,-0.5};
static Quat g0001 = { 0.0, 0.0, 0.0, 1.0};
static Quat gl000 = { 1.0, 0.0, 0.0, 0.0};
switch (turn) {
default: return (Qt_Conj(qg));
case X: g = Qt_Mul({g, gtoz = gxtoz); swap(ka,X,Z) break;
case Y: g = Qt_Mul(g, gtoz = gytoz); swap(ka,Y,Z) break;
case Z: gtoz = g0001; break;
}
g = Qt_Conj(q};
mag{0] = (double)qg.z*qg.z+ {double)g.w*q.w-0.5;
mag(l] = (double)g.x*qg.z-{double}q.vy*qg.w;
mag([2] = (double)qg.y*qg.z+{double)qg.x*qg.w;
for (i=0; i<3; i++) if (neglil] = (magl[i}<0.0)) magli] = -magl(i];
if (mag[0l>magl[l}) {if (mag(0l>mag(2]) win = 0; else win = 2;}
else {if (magl{l]l>mag{2]) win = 1; else win = 2;
switch (win) {
case 0: if (neg[0]) p = ql000; else p = q0001; break;
case 1: if (neg[l]) p = gppmm; else p = gpppp; cycle(ka,0) break;
case 2: if (neg[2]) p = gmpmm; else p = gpppm; cycle(ka,l) break;

}

I1.4 Polar Matrix Decomposition < 219

gp = Qt_Mul (g, p);
t = sqgrt(mag[winl+0.5);
p = Qt_Mul(p, Qt_(0.0,0.0,-gp.z/t,gp.w/t));
p = Qt_Mul(gtoz, Qt_Conj(p));:
} else {
float qal4], paldl;
unsigned lo, hi, negl4], par = 0;
double all, big, two;
qal0] = g.x; gall] = g.y:; qgal2] = g.2z; gal3] = q.w;
for (i=0; i<4; i++) |
pali] = 0.0;
if {(negli] = (qgalil]<0.0)) gali] = -galil;
par "= negf{il;
}
/* Find two largest components, indices in hi and lo */
if (gal0l»galll) lo = 0; else lo = 1;
if (gqal2]»qal3]) hi = 2; else hi = 3;
if (ga(lol>galhi]} {
if (qaflo”ll»ga(hi]) {hi = lo; lo *= 1;}
else {hi = lo; lo "= hi; hi "= lo;}
} else {if (galhi”ll>qgallo]) lo = hi"l;}
all = (galOl+galll+gal2]+qal3])*0.5;
two (galhil+gallo]) *SQRTHALF;
big = galhil;
if (all>two) {
if (all>big) {/*all*/
{int i; for (i=0; i<4; i++) pa(i]l = sgninegli], 0.5);}
cycle(ka,par)
} else {/*big*/ palhi] = sgn(negl[hil,1.0);}
} else {
if (two>big) {/*two*/
palhi] = sgn(neg[hi],SQRTHALF); pallo] = sgn(neg[lo], SQRTHALF);
if (lo>hi) {hi ~= lo; lo "= hi; hi "= lo;}
if (hi==W) {hi = "\001\002\000"[lc]; lo = 3-hi-lo;}
swap (ka,hi, lo)
} else {/*big*/ palhi] = sgn{neg(hi],1.0);}

}

p.x = -pal[0); p.y = -palll; p.z = -pal2l]l; p.w = pal3];
}
k-»>x = kal[X]: k->y = kalY]; k-»z = kalzZ];
return (p):;

220 < Transformations

/*¥*F**kx% Decompose Affine Matrix *x**++x/

/* Decompose 4x4 affine matrix A as TFRUK(U transpose),
* translation components, g contains the rotation R,

* gcale factors, and f contains the sign of the determinant.
* Assumes A transforms column vectors in right-handed coordinates.

* See Ken Shoemake and Tom Duff, Matrix Animation and Polar Decomposition,

* Proceedings of Graphics Interface 1992.
*/

void decomp_affine (HMatrix A, AffineParts *parts)

{
HMatrix Q, S, U;
Quat p:
float det;
parts->t = Qt_(A[X][W}, A[Y][W], A[Z]I[W]
det = polar_decomp(A, Q, S);
if (det<0.0) {
mat_copy (Q,=,-0,3);
parts->f = -1;
} else parts->f = 1;
parts->q = Qt_FromMatrix(Q);
parts->k = spect_decomp(S, U);
parts->u = Qt_FromMatrix(U);
p = snuggle(parts->u, &parts->k);
parts->u = Qt_Mul (parts->u, p);

Jr*xxxxxx Tnyert Affine Decomposition **x#**#*x/

/* Compute inverse of affine decomposition.
*/

0);

void invert_affine(AffineParts *parts, AffineParts *inverse)

{
Quat t, p;
inverse->f = parts->f;
inverse->gq = Qt_Conj(parts->qd);
inverse->u = Qt_Mul (parts->g, parts->u);
inverse->k.x (parts->k.x==0.0) 2 0.0
inverse->k.y = (parts->k.y==0.0) 2 0.0
inverse->k.z (parts->k.z==0.0) ? 0.0
inverse->k.w = parts->k.w;

1.0/parts->k.x;
1.0/parts->k.y;
1.0/parts->k.z;

t = Qt_(-parts->t.x, -parts->t.y, -parts->»t.z, 0};

t = Qt_Mul{Qt_Conj(inverse->u), Qt_Mul(t, inverse->u));

t = Qt_{inverse->k.x*t.x, inverse->k.y*t.y, inverse->k.z*tr.z,
p = Qt_Mul (inverse->qg, inverse->u);

t = Qt_Mul{p, Qt_Mul(t, Qt_Conji(p))):

inverse->t = (inverse->f>0.0) ? t : Qt_(-t.x, -t.y, -t.z, 0);

}
JREER ROF *Kxkk/

where t contains the
u contains U, k contains

0);

1I1.4 Polar Matrix Decomposition ¢ 221

¢ Bibliography <

(Goldman 1992) Ronald N. Goldman. Decomposing linear and affine transformations.
In David Kirk, editor, Graphics Gems III, pages 108-116. Academic Press, Boston,
1992.

(Golub and Van Loan 1989) Gene H. Golub and Charles F. Van Loan. Matriz Com-
putations, second edition. Johns Hopkins University Press, Baltimore, 1989.

(Higham and Schreiber 1988) Nicholas Higham and Robert S. Schreiber. Fast polar
decomposition of an arbitrary matrix. Technical Report 88-942, Department of
Computer Science, Cornell University, October 1988.

(Raible 1990) Eric Raible. Decomposing a matrix into simple transformations. In
Andrew Glassner, editor, Graphics Gems, page 464. Academic Press, Boston, 1990.

(Shoemake and Duff 1992) Ken Shoemake and Tom Duff. Matrix animation and polar
decomposition. In Proceedings of Graphics Interface ‘92, pages 258-264, 1992.

(Thomas 1991) Spencer W. Thomas. Decomposing a matrix into simple transforma-
tions. In James Arvo, editor, Graphics Gems II, pages 320-323. Academic Press,
Boston, 1991.

1.5

Euler Angle Conversion

Ken Shoemake

University of Pennsylvania
Philadelphia, PA
shoemake @graphics.cis.upenn.edu

¢ Introduction <

All modern computer graphics systems use homogeneous matrices internally, and most
use quaternions (Foley et al. 1990). Many, however, retain a text-based interface using
Euler angles and need to convert to and from their internal representations. But to
exchange data with other systems, an interface may need to handle all of the 24 different
ways of specifying rotations with a triple of angles (Craig 1989, Appendix B). The
purpose of this Gem is to show how a few lines of code can convert any of these varieties
of Euler angles to and from matrices and quaternions, with the choice of variety given
as a parameter.

Recall that a triple of Euler angles [01, 62, 63] describes how a coordinate frame r
rotates with respect to a static frame s. The triple is interpreted as a rotation by 6;
around an axis A1, then a rotation by @ around an axis Ag, and finally a rotation by
65 around an axis Asg, with Ao different from both A; and Aj. The axes are restricted
to the coordinate axes, X, Y, and Z, giving 12 possibilities: XY Z, XY X, YZX,YZY,
ZXY,ZXZ XZY,XZX,YXZ, YXY,ZYX, ZY Z. The jump to 24 comes from the
choice of using axes from either the static frame s or the rotating frame r. Equivalently,
the rotations can be listed right to left or left to right.!

¢ Combinatorial Collapse ¢

It will be helpful to designate a convention with a 4-tuple: inner axis, parity, repetition,
and frame. The inner axis will be the axis of the first standard matrix to multiply a
vector. Since we are assuming column vectors, the inner axis is the axis of the rightmost
matrix. Parity is even if the inner axis X is followed by the middle axis Y, or Y is
followed by Z, or Z is followed by X; otherwise parity is odd. Repetition means whether
the first and last axes are the same or different. Frame refers to the choice of either the
static or the rotating frame, and applies to all three axes. With static frame axes the

'See (Craig 1989, Section 2.8) for a more leisurely discussion.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

Macintosh ISBN 0-12-336156-7 222

I1l.5 Euler Angle Conversion < 223

inner axis is the first axis, while with rotating frame axes the inner axis is the last axis.
Define the standard rotation matrices R.(6), Ry(f), and R.(9) as

1 0 0 cosf 0. sinf cosf sin—60 0
0 cosf sin—0 0 1 0 sinf cosf O
0 sinf® cosé

sin—6 0 cosé 0 0 1

Then R;(63)R,(62)R;(0;) is [X,Even,Same,S-frame|, which we can abbreviate as XESS,
while R (61)Rz(62)Ry(63) is [Y,0dd,Diff,R-frame], which we can abbreviate as YODR.
Since each of the last three choices in the tuple can be encoded in a single bit, the
whole tuple compactly encodes as an integer between 0 and 23. From a human factors
perspective, the tuple notation makes it impossible to refer to nonsense conventions like
XYY, and the integer values can be given meaningful names (see the code).

From a programming perspective, the tuple helps us collapse 24 cases to 2. Suppose
we have code to convert a rotation matrix to XEDS angles, R = R, (63)R,(62)R.(61).
If we are asked to extract XEDR angles, R = R, (6;)R,(62)R(f3), we use our code as
is, and simply swap 6; and 65 afterwards.

We can also accomodate YEDS angles, R = R;(03)R;(62)R,(6,), by first changing
the basis of R by a permutation matrix P which converts (Y, Z, X) to (X,Y, Z). Now
applying our old XEDS code to PRPT extracts the YEDS angles we want from R. In
fact, we can extract any permutation we like by a suitable choice of P, with one caveat.
When the permutation is odd (XODS), we are switching to a left-handed coordinate
frame, and the sense of rotation is reversed. The fix is simple: negate the angles.

No permutation, however, can turn (X,Y, Z) into (X,Y, X); we need new code for
XESS angles. But the XEDS and XESS archetypes, coupled with permuting, negating,
and swapping, are all we need. For efficiency, we can permute as we access the matrix
entries during extraction. And while the discussion so far has focused on matrix-to-
angle extraction, angle-to-matrix conversion permits the same economies. A little more
thought shows quaternion conversions can also be collapsed.

¢ Archetypes ¢

Now we need archetypes for the conversions. The XEDS and XESS choices list fixed
axis rotations in the order they are applied, and yield the matrices

€203 8281C3 — €183 S2C1C3 + 5183
Ryy. = | cos3 825183 +c1c3 $20183 — 51C3
-89 C2851 CoC1
and
C2 $281 S2C1
Ryye = | s283 —cos1s3+cic3 —cac183 — 5163
—82¢3 c281Cc3 + €183 CpC1C3 — 8183

224 & Transformations

where ¢y is cos 8y, s is sin#q, and so on. The corresponding quaternions are
Qry- = [C251C3 — 82C183, €25183 + 82€1C3, C2C183 — §281C3, C2C1C3 + 525153]
and
Qryz = [c2(c183 + s1c3), sa2(cics + s183), s2(c1s3 — s1¢3), ca(cics — 5183)]

Note that the quaternion w component is given last, not first.

Conversion from Euler angles to quaternions or matrices can take advantage of com-
mon subexpressions, but is otherwise obvious. Converting a quaternion to Euler angles
is easiest if we first convert to a matrix. Matrix conversion extracts sine and cosine of
65, then divides by the results to obtain sine and cosine of 6; and #3. When sinfy = 0
(XESS) or cos; = 0 (XEDS), an alternate strategy must be used to avoid dividing by
zero. In any scheme of Euler angles there are many triples that can describe the same
matrix, which is a particularly bad problem when the alternate strategy is needed. The
conversion routine cannot avoid this problem, but makes a conservative choice. In ei-
ther situation atan2 is used to compute each angle from its sine and cosine to obtain
quadrant information and good accuracy.

The HMatrix data type in the code represents 4-by-4 homogeneous transforms for
right-handed rotations in right-handed coordinates applied to column vectors. If you
are using row transforms (such as the Silicon Graphics GL library’s Matrix type), you
will need to transpose the matrix accesses. Free storage management is much easier
if common data types are (multiples of) the same size, so I have chosen to use the
Quat data type to hold Euler angles as well. A variety of construction and extraction
macros are defined, but most users will only need the constants encoding order, such as
EulOrdXYZs. For example, the following program reads ¢, 6, and ¢ and converts them
to a matrix using the quantum mechanics convention R;(¢)Ry(6)Rz(¢) (Goldstein
1980, Appendix B). It then converts the matrix to roll, pitch, and yaw angles, and
prints them.

/* EulerSample.c - Read angles as guantum mechanics, write as aerospace */
#include <stdio.h>
#include "EulerAngles.h"
void main(void)
{
EulerAngles outAngs, inAngs = {0,0,0,EulOrdXy¥Xr};
HMatrix R;
printf ("Phi Theta Psi (radians): ");
scanf ("$f %f %f",&inAngs.x, &inAngs.y,&inAngs.z);
Eul_ToHMatrix{inAngs, R);
outAngs = Eul_FromHMatrix(R, EulOrdXvzs):;
printf (" Roll Pitch Yaw (radians)\n") ;
printf("%$6.3f %6.3f %6.3f\n", outAngs.x, outAngs.y, OUtAngs.z):;

111.5 Euler Angle Conversion

¢ Code ¢

Headers
/*¥**% guatTypes.h - Basic type declarations ****/
#ifndef _H_QuatTypes
#define _H_QuatTypes

/*** Definitiong ***/
typedef struct {float x, y, z, w;} Quat; /* Quaternion */
enum QuatPart (X, Y, Z, W};

typedef float HMatrix[4]{4]; /* Right-handed, for column vectors */
typedef Quat EulerAngles; /* (x,v,z)=ang 1,2,3, w=order code

#endif

[F**k ROF **kk*/

/*x*x* EulerAngles.h - Support for 24 angle schemes ***x*/
/* Ken Shoemake, 1993 */

#ifndef _H_EulerAngles
#define _H_FulerAngles
#include "QuatTypes.h”

/*** Order type constants, constructors, extractors ***/

/* There are 24 possible conventions, designated by:
/* o EulAxI = axis used initially
/* o EulPar = parity of axis permutation
/* o EulRep = repetition of initial axis as last
/* o EulFrm = frame from which axes are taken
/* Axes I,J,K will be a permutation of X,Y,Z.
/* Axls H will be either I or K, depending on EulRep.
/* Frame S takes axes from initial static frame.
/* If ord = (AxI=X, Par=Even, Rep=No, Frm=S), then
/* {a,b,c,ord} means Rz (c)Ry(b)Rx(a), where Rz(c)v
/* rotates v around 7 by ¢ radians.
#define EulFrmS 0
#define EulFrmR 1
#define EulFrm(ord) ((unsigned) (ord) &1l)
#tdefine EulRepNo 0
#define EulRepYes 1
#define EulRep (ord) ({ (unsigned) (ord)>>1)&1)
#define EulParEven 0
#define EulParodd 1
#define FulPar (ord) ({ (unsigned) (ord)>>2)&1)
#define EulSafe "\000N001N002N\000"
#define EulNext "\N001N002N000N001 "
#define BulAxI (ord) ((int) (EulSafe[({{unsigned) (ord)>>3)&
#define EulaxJ (ord) ((int) (EulNext [EulAxI (ord) + (EulPar {(ord)==EulPar0odd)]}))
#define EulaxK (ord) ((int) (EulNext [EulAxTI (ord) + (EulPar (ord) !=EulPar0dd)]))
#define EulAxH (ord) ((EulRep (ord)==EulRepNo) ?EulAxK (ord)

tdefine FulGetOrd(ord,i,j,k,h,n,s,f)
n=o&l;o>>=1;i=FulSafelo&3];j=EulNext [i+n];k=EulNext [i+1-n];
/* EulOrd creates an order value between 0 and 23 from 4-tuple choices.

#define EulOrd(i,p,r,f) (D) <<y +(pP)y<<]l)+(r))<<l)+

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

3N

:EulAxI (oxrd))
/* EulGetOrd unpacks all useful information about order simultaneously.
{unsigned o=ord;f=0&l;0>>=1;s=0&1;0>>=1;\

(£))

o 225

*/

*/

226 < Transformations

/* Static axes */

#define EulOrdXYZs FEulOrd(X,EulParEven, EulRepNo, EulFrms)
#define EulOrdXvyXs EulOrd(X,EulParEven, EulRepYes, EulFrmS)
#define EulOrdXZys EulOrd (X, FulPar0dd, EulRepNo, EulFrmsS)

#define EulOrdXZXs EulOrd (X, EulPar0dd, FulRepYes, EulFrms)
#define EulOrdyzXs Eulord{(Y,EulParEven, EulRepNo, EulFrms)
#define EulOrdYzZ¥Ys EulOrd (Y, EulParEven, EulRepYes, EulFrmS)
#define EulOrdyXZs EulOrd{Y,EulPar0dd, EulRepNo, EulFrmS)

#define EulOrdvYXYs Eulord{Y,EulPar0dd, EulRepY¥Yes, EulFrms)
#define EulOrdzXYs EulOrd(z, EulParEven, EulRepNo, EulFrms)
#define EulOrdZXZs EulOrd(Z,EulParEven, EulRepYes, EulFrmS)
#define EulOrdzyYXs EulOrd{z, EulPar0dd, EulRepNo, EulFrmS)

#define EulOrdZYZs EulOrd(Z,EulPar0dd, EulRepYes, EulFrmS)

/* Rotating axes */

#define EulOrdZyYXr EulOrd (X, EulParEven, EulRepNo, EulFrmR)
#define FulOrdXYXr EulOrd (X, EulParEven, EulRepYes, EulFrmR)
#define EulOrdYZXr EulOrd (X, EulPar0dd, EulRepNo, EulFrmR)

#define EulOrdXZXr EulOord (X, EulPar0dd, EulRepYes, EulFrmR)
#define EulOrdXZVYr EulCord (Y, EulParEven, EulRepNo, EulFrmR)
#define EulOrdYZYr EulOrd(Y,EulParEven, FEulRepYes, EulFrmR)
#define FulOrdzXyr EulOrd(Y,EulPar0dd, EulRepNo, EulFrmR)

#define EulOrdvYXYr EulOrd (Y, EulPar0dd, EulRepYes, EulFrmR)
#define EulOrdvyXzr EulOrd(z,EulParEven, FulRepNo, EulFrmR)
#define EulOrdZXZr EulOrd (7, EulParEven, FulRepYes, EulFrmR)
#define EulOrdXYzZr FulOrd(Z,EulPar0dd, EulRepNo, EulFrmR)

#define EulOrdzYzr EulOrd(Z,EulPar0dd, EulRepYes, EulFrmR)

EulerAngles Eul_(float ai, float aj, float ah, int order);
Quat Eul_ToQuat (EulerAngles ea);

vold Eul_ToHMatrix (EuleraAngles ea, HMatrix M);

EulerAngles Eul_FromHMatrix(HMatrix M, int order);
EulerAngles Ful_FromQuat (Quat ¢, int order);

#endif

/**** EOF ****/

Routines

/**** EulerAngles.c - Convert Euler angles to/from matrix or quat ****/
/* Ken Shoemake, 1993 */

#include <math.h>

#include <float.h>

#include "EuleraAngles.h"

EulerAngles Eul_(float ai, float aj, float ah, int order)
{

EulerAngles ea;

ea.x = ai; ea.y = aj; ea.z = ah;

ea.w = order;

return (ea);

1.5 Euler Angle Conversion

/* Construct guaternion from Euler angles (in radians). */
Quat Eul_ToQuat (EulerAngles ea)
{
Quat qu;
double a(3], ti, t3j, th, ¢i, <¢j, ch, si, sj, sh, cc, ¢s, sc, ss;
int i,3j,k,h,n,s,£;
EulGetOrd(ea.w,i,j,k,h,n,s,f);
if (f==EulfFrmR) {float t = ea.x; ea.x = ea.z; ea.z = t;}
if (n==EulPar0dd) ea.y = -ea.y;
ti = ea.x*0.5; tj = ea.y*0.5; th = ea.z*0.5;
ci = cos(ti); <¢j = cos(tj); <ch = cos(th);
si = sin(ti); s3j = sin{tj); sh = sin(th);
cc = ci*ch; ¢s = ci*sh; sc = si*ch; ss = si*sh;
if {(g==EulRepYes) {
afil = c¢j*(cs + sc); /* Could speed up with */
afjl = (+ 8s); /* trig identities. */
alk] = sj*(cs - sc);
qu.w = cj*(- s8);
} else {
alil = cj*sc - sj*cs;
alj] = cj*ss + sj*cc;
alk] = cj*cs - sj*sc;
qu.w = cj*cc + sj*ss;
}
if (n==EulParodd) aljl = -aljl;
qu.x = al[X]; qu.y = alY]; qu.z = alz];
return (qu);
}
/* Construct matrix from Euler angles (in radians). */
void Eul_ToHMatrix (EulerAngles ea, HMatrix M)
{
double ti, tj, th, ci, <¢j, c¢h, si, sj, sh, cc, ¢s, sc, ss;
int i,j,%,h,n,s,f;
FulGetOrd(ea.w,i,j,k,h,n,s,f);
if (f==EulFrmR) {float t = ea.X; ea.X = ea.z; ea.z = t;}
if (n==EulPar0dd) {ea.x = -ea.x; ea.y = -ea.y; ea.z = -ea.z;}
ti = ea.x; ti = ea.y:; th = ea.z;
ci = cos(ti); ¢ = cos(tj); ch = cos(th)
si = sin(ti); sj = sin(tj); sh = sin(th);
cc = ci*ch; ¢s = ci*sh; sc = si*ch; ss = si*sh;
if (g==EulRepYes) {
M{i][i] = c3; M{1i][3] = s3i*si; M[i][k] = sj*ci;
M[j][i] = si*sh; MI[JI[3] = -ci*ss+cc; M[J1[k] = -cij*cs-sc;
M{k][1] = -sj*ch; M[kI[J] = <cj*sc+cs; M[k] [k cj*cc-ss;
} else {
M[i]1[i] = c¢j*ch; MI[i1[J] = si*sc-cs; M[i][k] sj*cc+ss;
M[3)[i] = cj*sh; M[J][J] = si*ss+cc; M[]][k] sj*cs-sc;
M[k][i] = -s3; M[k][j] = ci*si; M[k] [k] cj*ci;
}

MIW] [X]=M[W] [Y]=M[W] [2]=M[X] [W]=M[Y] [W]=M[Z] [W]=0.

0; M[W][W]=1.0;

o 227

228 ¢

Transformations

/* Convert matrix to Euler angles
FulerAngles Eul_FromHMatrix{HMatr
{
EulerAngles ea;
int i,3j,k,h,n,s, £t;
EulGetOrd(order,i,j,k,h,n,s,f
if (s==EulRepYes) {
double sy = sqrt(M[i][]]
if (sy > 16*FLT_EPSILON)
il
M[1
i}

ea.x = atan2(M{i][J],
ea.y = atan2(sy,]
ea.z = atan2(M[3j] (1],
} else {
ea.x = atan2(-M[J][k]
ea.y = atan2(sy, M[1]
ea.z = 0;
}
} else {
double cy = sqgrt{M[i]{i]*
if (cy > 16*FLT_EPSILON)
ea.x = atan2(M[k][J],
ea.y = atan2(-M[k][i]
ea.z = atan2 (M[Jj][1i],
} else {
ea.x = atan2(-M[3j][k],
ea.y = atan2(-M{k]I[1]
ea.z = 0;
}
}
if (n==EulParodd) {ea.x = -ea.

if (f==EulFrmR) {float t = ea.

ea.w = order;
return (ea);

(in radians). */
ix M, int order)

)

M[i][k]);
(i1):
-M[k][1]);

, M[31031):
[i1)

X; ea.y = - ea.y;

X; ea.xXx = ea.z; ea.z

}
/* Convert quaternion to Euler angles (in radians). */
EulerAngles Eul_FromQuat (Quat g, int order)
{
" HMatrix M;
double Ng = ¢.X*Q.X+d.Y*q.¥y+d.Z2*q.2+q.W*q.W;
double s = (Ng > 0.0) ? (2.0 / Ng) : 0.0;
double xs = g.x*sg, ys = g.y*s, zZ8 = J.z¥S;
double wx = g.w*xs, wy = q.w*ys, WZ = g.W*zZS;
double xx = g.x*xs, Xy = g.xX*ys, XZ = g.x*zs;
double yy = g.y*ys, vz = d.y*zs, 2z = Qg.z2%2S;
M[X][X] = 1.0 - (yy + zz); MIX]I[Y] = xy - wz; M[X]
MIY][X] = xy + wz; M[Y][Y] = 1.0 - (xx + zz); M[Y]
M[Z] [X] = xz - wy; M[J[Y] = VZ + WX; M[Z)[Z] = 1.
M[W] [X]=M[W] [Y]=M[W M{X]) [W)=M[Y] [W]=M[Z] [W]=0.
return (Eul#FromHMatrlx(M, order)) ;

}
/**** EOF ****/

*M{1][3] + MI1][k]I*M[1][k]);
{

I1l.5 Euler Angle Conversion < 229

¢ Bibliography <
(Craig 1989) John J. Craig. Introduction to Robotics: Mechanics and Control, 2nd
edition. Addison-Wesley, Reading, MA, 1989.

(Foley et al. 1990) James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice, 2nd edition. Addison-
Wesley, Reading, MA, 1990.

(Goldstein 1980) Herbert Goldstein. Classical Mechanics, 2nd edition. Addison-Wesley,
Reading, MA, 1980.

Q111.6

Fiber Bundle Twist Reduction

Ken Shoemake

University of Pennsylvania
Philadelphia, PA
shoemake @graphics.cis.upenn.edu

¢ Introduction <

Mathematicians are clever at recycling. When an old concept proves inadequate for a
new situation, often a little fudging makes it fit. Fiber bundles are such a success story.
Computer graphics can use a famous bundle, the Hopf fibration of the quaternion unit
sphere, for a little fudging of its own: reducing twist in camera tracking. This Gem
provides a brief introduction to fiber bundles, explains the Hopf fibration, and shows
how to use it to measure and reduce twist. Don’t worry if the mathematical details take
a while to sink in. The concepts are subtle, but the calculations are simple.

Patrons of a play sit still, viewing action on the stage in front of them. Early cin-
ematographers did the same, using a static, constantly recording camera. Over time,
zooming, panning, trucking, and cutting became accepted practice. Yet, even today,
there are conventional limits on camera use.! Computer graphics ignores many viewer-
friendly conventions, but does respect one: cameras rarely tilt. (See Figure la.)

(d)

(a) (b)

Figure 1. (a) Tilted. (b) Untilted. (c) Path with rapid twist, from top. (d) Path with slow twist, from side.

When a camera tracks an object passing directly overhead, or nearly so, avoiding tilt
requires a large change in orientation for even a small change in gaze. (See Figure lc.)
This manifests itself as rapid turning, or twist, around the gaze direction. Both tilt and

You might notice, for example, that a train ride from San Francisco to Chicago is filmed with the
train moving from left to right in every scene, to give a sense of progress.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

Macintosh ISBN 0-12-336156-7 230

I11.6 Fiber Bundle Twist Reduction < 231

(a) (b)
Figure 2. (a) Product. (b) Bundle.

twist are disorienting, so compromise is necessary. Often, animators manually intervene,
moving the camera or the object to avoid this situation. Otherwise, some tilt must be
accepted to reduce twist. The challenge is to formally define and measure twist, and to
add tilt automatically when twist is excessive. That’s where fiber bundles come in.

¢ Fiber Bundles ¢

A fiber bundle is a topological space that is “locally” a product. The definition is some-
what like that of manifolds, a patchwork of overlapping neighborhoods that together
make up the whole space. In a manifold, each neighborhood looks like n-dimensional
Euclidean space; in a fiber bundle, each looks like a product. Figure 2 illustrates the
concept by contrasting a cylindrical strip, which is a product (and a trivial bundle),
with the famous Mé&bius strip, which is a bundle but not a product.

The cylindrical strip, like any product space, comes with continuous projection maps,
w1 and mg, onto each of its factors. In this case the factors are a circle and a line segment.
If z is a point on the circle, the points that project to z, 771_1 (z), form a line segment.
Likewise, the inverse image of a point on the line segment is a circle. Every point of the
cylindrical strip can be identified with a unique pair of points, one from the circle and
one from the line segment: p = (p1, p2).

The Mobius strip also projects continuously onto the circle, again with a line segment
for the inverse image of each circle point. It is not possible, however, to project contin-
uously onto a line segment, because of the twist. (Notice, for example, that the Mobius
strip has only a single edge.) Nevertheless, if we restrict our attention to a small interval
around any point on the circle, we find that the inverse image of that neighborhood is

232 & Transformations

a product of the neighborhood with a line segment. Segments of the Mobius strip look
just like segments of the cylindrical strip.

Every fiber bundle shares these features of the Mobius strip (Steenrod 1951). There
is a total space, here the strip, which is a bundle over the base space, here a circle.
There is a continuous projection, m, from the total space to the base space. The inverse
image, 771(x), of a point = in the base space is called the fiber over z, and each fiber
is topologically the same as (homeomorphic to) the fiber space, here a line segment.
Every point of the base space has some open neighborhood whose inverse image is
(homeomorphic to) the product of that neighborhood with the fiber space. Notice that
for a product space both factor spaces have equal status, while for a fiber bundle the
single projection introduces an asymmetry between the base space and the fiber space.

Here are a few examples to give the definitions more meaning. Every differentiable n-
dimensional manifold M comes with a 2n-dimensional bundle which is also a manifold:
the tangent bundle, TM. (It also has a cotangent bundle, 7*M.) The fiber over a point
of M is the space of tangent vectors there. For example, at each point of a sphere there
is a tangent plane, which we take as a fiber. The bundle of all these tangent planes,
however, is certainly not the product of a sphere and a plane. If it were, we could easily
define a smooth non-vanishing field of tangent vectors, which the famous “hairy ball”
theorem says is impossible (Milnor 1965). We can throw away the lengths of the tangent
vectors to get the contact bundle, CM (Burke 1985). In the next section we will see
that unit quaternions and 3D rotations are also bundles over a sphere. We can view a
sphere itself as a bundle over 2D projective space; fibers are antipodal points.

¢ Hopf Fibration <

Heinz Hopf discovered the unexpected fiber bundle we are going to use. He showed that
53, the unit sphere in 4D space, was a fiber bundle over S?, the unit sphere in 3D space,
with fiber space S', the unit sphere in 2D space. (The exponent gives the dimension
of the sphere, which is one less than the space it is embedded in. So § 1ig a circle, 52
is an ordinary sphere, and S® is a hypersphere.) This dissection is known as the Hopf
fibration. It is not terribly complicated, and it is just what we need to limit twist. See
the visualization in color plate II1.6.1.

Unit quaternions (Shoemake 1985) will serve as our points on S3. Remember that a
quaternion g acts as a rotation R, on a 3D point p via the formula R4(p) = gpq!, and
that R,(R,(p)) = R4 (p). A unit quaternion ¢ = [(z,y, z), w] = [Vsinf, cosf] acts as a
rotation by 26 around the axis v. Let Z = [(0,0,1), 0] be a unit vector in the z direction.
We choose the projection 7(g) of a unit quaternion ¢ to be R4(2). Since rotating a unit
vector gives a unit vector, this formula clearly produces a point on S? (at the tip of
the vector). As q varies we will get different points, so m(q) really does map points on
5% (the unit quaternions, q) to points on S? (the position of the rotated z ti